Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case
- Autores
- Fernández Tío, Julián María; Dotti, Gustavo Daniel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F=δ(Fαβ∗Fαβ) and Q=δ(148Cαβγδ∗Cαβγδ), where Cαβγδ is the Weyl tensor, Fαβ is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q. For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.
Fil: Fernández Tío, Julián María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Dotti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
Black holes
Linear stability
Non modal stability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64699
Ver los metadatos del registro completo
id |
CONICETDig_77b3bb07604798aac1c621a97f1a74ba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64699 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström caseFernández Tío, Julián MaríaDotti, Gustavo DanielBlack holesLinear stabilityNon modal stabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F=δ(Fαβ∗Fαβ) and Q=δ(148Cαβγδ∗Cαβγδ), where Cαβγδ is the Weyl tensor, Fαβ is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q. For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.Fil: Fernández Tío, Julián María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Dotti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaAmerican Physical Society2017-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64699Fernández Tío, Julián María; Dotti, Gustavo Daniel; Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case; American Physical Society; Physical Review D; 95; 12; 26-6-20172470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevD.95.124041info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.95.124041info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1607.00975info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:13Zoai:ri.conicet.gov.ar:11336/64699instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:13.887CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case |
title |
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case |
spellingShingle |
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case Fernández Tío, Julián María Black holes Linear stability Non modal stability |
title_short |
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case |
title_full |
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case |
title_fullStr |
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case |
title_full_unstemmed |
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case |
title_sort |
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case |
dc.creator.none.fl_str_mv |
Fernández Tío, Julián María Dotti, Gustavo Daniel |
author |
Fernández Tío, Julián María |
author_facet |
Fernández Tío, Julián María Dotti, Gustavo Daniel |
author_role |
author |
author2 |
Dotti, Gustavo Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Black holes Linear stability Non modal stability |
topic |
Black holes Linear stability Non modal stability |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F=δ(Fαβ∗Fαβ) and Q=δ(148Cαβγδ∗Cαβγδ), where Cαβγδ is the Weyl tensor, Fαβ is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q. For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen. Fil: Fernández Tío, Julián María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Dotti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F=δ(Fαβ∗Fαβ) and Q=δ(148Cαβγδ∗Cαβγδ), where Cαβγδ is the Weyl tensor, Fαβ is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q. For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64699 Fernández Tío, Julián María; Dotti, Gustavo Daniel; Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case; American Physical Society; Physical Review D; 95; 12; 26-6-2017 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64699 |
identifier_str_mv |
Fernández Tío, Julián María; Dotti, Gustavo Daniel; Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case; American Physical Society; Physical Review D; 95; 12; 26-6-2017 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevD.95.124041 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.95.124041 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1607.00975 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268843603394560 |
score |
13.13397 |