Viscoplasticity of voided cubic crystals under hydrostatic loading

Autores
Joëssel, Louis; Vincent, Pierre Guy; Garajeu, Mihail; Idiart, Martín Ignacio
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are considered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and bounding from above the corresponding dissipation potential à la Gurson. The second approach consists in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a periodic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement between all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crystal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some deficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, even for relatively strong plastic anisotropies.
Fil: Joëssel, Louis. Institut de Radioprotection Et de Sureté Nucléaire; Francia
Fil: Vincent, Pierre Guy. Institut de Radioprotection Et de Sureté Nucléaire; Francia
Fil: Garajeu, Mihail. Centre National de la Recherche Scientifique; Francia. Aix Marseille Universite; Francia
Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Materia
CRYSTALLINE SOLIDS
HOMOGENIZATION
MICROMECHANICS
POROSITY
VISCOPLASTICITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100051

id CONICETDig_b835328faec86c2cfe7d33e4f4b12527
oai_identifier_str oai:ri.conicet.gov.ar:11336/100051
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Viscoplasticity of voided cubic crystals under hydrostatic loadingJoëssel, LouisVincent, Pierre GuyGarajeu, MihailIdiart, Martín IgnacioCRYSTALLINE SOLIDSHOMOGENIZATIONMICROMECHANICSPOROSITYVISCOPLASTICITYhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are considered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and bounding from above the corresponding dissipation potential à la Gurson. The second approach consists in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a periodic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement between all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crystal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some deficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, even for relatively strong plastic anisotropies.Fil: Joëssel, Louis. Institut de Radioprotection Et de Sureté Nucléaire; FranciaFil: Vincent, Pierre Guy. Institut de Radioprotection Et de Sureté Nucléaire; FranciaFil: Garajeu, Mihail. Centre National de la Recherche Scientifique; Francia. Aix Marseille Universite; FranciaFil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaPergamon-Elsevier Science Ltd2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100051Joëssel, Louis; Vincent, Pierre Guy; Garajeu, Mihail; Idiart, Martín Ignacio; Viscoplasticity of voided cubic crystals under hydrostatic loading; Pergamon-Elsevier Science Ltd; International Journal Of Solids And Structures; 147; 8-2018; 156-1650020-7683CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020768318302166info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2018.05.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:01:57Zoai:ri.conicet.gov.ar:11336/100051instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:01:57.584CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Viscoplasticity of voided cubic crystals under hydrostatic loading
title Viscoplasticity of voided cubic crystals under hydrostatic loading
spellingShingle Viscoplasticity of voided cubic crystals under hydrostatic loading
Joëssel, Louis
CRYSTALLINE SOLIDS
HOMOGENIZATION
MICROMECHANICS
POROSITY
VISCOPLASTICITY
title_short Viscoplasticity of voided cubic crystals under hydrostatic loading
title_full Viscoplasticity of voided cubic crystals under hydrostatic loading
title_fullStr Viscoplasticity of voided cubic crystals under hydrostatic loading
title_full_unstemmed Viscoplasticity of voided cubic crystals under hydrostatic loading
title_sort Viscoplasticity of voided cubic crystals under hydrostatic loading
dc.creator.none.fl_str_mv Joëssel, Louis
Vincent, Pierre Guy
Garajeu, Mihail
Idiart, Martín Ignacio
author Joëssel, Louis
author_facet Joëssel, Louis
Vincent, Pierre Guy
Garajeu, Mihail
Idiart, Martín Ignacio
author_role author
author2 Vincent, Pierre Guy
Garajeu, Mihail
Idiart, Martín Ignacio
author2_role author
author
author
dc.subject.none.fl_str_mv CRYSTALLINE SOLIDS
HOMOGENIZATION
MICROMECHANICS
POROSITY
VISCOPLASTICITY
topic CRYSTALLINE SOLIDS
HOMOGENIZATION
MICROMECHANICS
POROSITY
VISCOPLASTICITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are considered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and bounding from above the corresponding dissipation potential à la Gurson. The second approach consists in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a periodic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement between all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crystal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some deficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, even for relatively strong plastic anisotropies.
Fil: Joëssel, Louis. Institut de Radioprotection Et de Sureté Nucléaire; Francia
Fil: Vincent, Pierre Guy. Institut de Radioprotection Et de Sureté Nucléaire; Francia
Fil: Garajeu, Mihail. Centre National de la Recherche Scientifique; Francia. Aix Marseille Universite; Francia
Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
description A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are considered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and bounding from above the corresponding dissipation potential à la Gurson. The second approach consists in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a periodic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement between all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crystal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some deficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, even for relatively strong plastic anisotropies.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100051
Joëssel, Louis; Vincent, Pierre Guy; Garajeu, Mihail; Idiart, Martín Ignacio; Viscoplasticity of voided cubic crystals under hydrostatic loading; Pergamon-Elsevier Science Ltd; International Journal Of Solids And Structures; 147; 8-2018; 156-165
0020-7683
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100051
identifier_str_mv Joëssel, Louis; Vincent, Pierre Guy; Garajeu, Mihail; Idiart, Martín Ignacio; Viscoplasticity of voided cubic crystals under hydrostatic loading; Pergamon-Elsevier Science Ltd; International Journal Of Solids And Structures; 147; 8-2018; 156-165
0020-7683
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020768318302166
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2018.05.022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781216088391680
score 12.982451