Viscoplasticity of voided cubic crystals under hydrostatic loading
- Autores
- Joëssel, Louis; Vincent, Pierre Guy; Garajeu, Mihail; Idiart, Martín Ignacio
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are considered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and bounding from above the corresponding dissipation potential à la Gurson. The second approach consists in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a periodic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement between all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crystal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some deficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, even for relatively strong plastic anisotropies.
Fil: Joëssel, Louis. Institut de Radioprotection Et de Sureté Nucléaire; Francia
Fil: Vincent, Pierre Guy. Institut de Radioprotection Et de Sureté Nucléaire; Francia
Fil: Garajeu, Mihail. Centre National de la Recherche Scientifique; Francia. Aix Marseille Universite; Francia
Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
CRYSTALLINE SOLIDS
HOMOGENIZATION
MICROMECHANICS
POROSITY
VISCOPLASTICITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100051
Ver los metadatos del registro completo
| id |
CONICETDig_b835328faec86c2cfe7d33e4f4b12527 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100051 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Viscoplasticity of voided cubic crystals under hydrostatic loadingJoëssel, LouisVincent, Pierre GuyGarajeu, MihailIdiart, Martín IgnacioCRYSTALLINE SOLIDSHOMOGENIZATIONMICROMECHANICSPOROSITYVISCOPLASTICITYhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are considered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and bounding from above the corresponding dissipation potential à la Gurson. The second approach consists in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a periodic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement between all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crystal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some deficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, even for relatively strong plastic anisotropies.Fil: Joëssel, Louis. Institut de Radioprotection Et de Sureté Nucléaire; FranciaFil: Vincent, Pierre Guy. Institut de Radioprotection Et de Sureté Nucléaire; FranciaFil: Garajeu, Mihail. Centre National de la Recherche Scientifique; Francia. Aix Marseille Universite; FranciaFil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaPergamon-Elsevier Science Ltd2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100051Joëssel, Louis; Vincent, Pierre Guy; Garajeu, Mihail; Idiart, Martín Ignacio; Viscoplasticity of voided cubic crystals under hydrostatic loading; Pergamon-Elsevier Science Ltd; International Journal Of Solids And Structures; 147; 8-2018; 156-1650020-7683CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020768318302166info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2018.05.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:01:57Zoai:ri.conicet.gov.ar:11336/100051instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:01:57.584CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Viscoplasticity of voided cubic crystals under hydrostatic loading |
| title |
Viscoplasticity of voided cubic crystals under hydrostatic loading |
| spellingShingle |
Viscoplasticity of voided cubic crystals under hydrostatic loading Joëssel, Louis CRYSTALLINE SOLIDS HOMOGENIZATION MICROMECHANICS POROSITY VISCOPLASTICITY |
| title_short |
Viscoplasticity of voided cubic crystals under hydrostatic loading |
| title_full |
Viscoplasticity of voided cubic crystals under hydrostatic loading |
| title_fullStr |
Viscoplasticity of voided cubic crystals under hydrostatic loading |
| title_full_unstemmed |
Viscoplasticity of voided cubic crystals under hydrostatic loading |
| title_sort |
Viscoplasticity of voided cubic crystals under hydrostatic loading |
| dc.creator.none.fl_str_mv |
Joëssel, Louis Vincent, Pierre Guy Garajeu, Mihail Idiart, Martín Ignacio |
| author |
Joëssel, Louis |
| author_facet |
Joëssel, Louis Vincent, Pierre Guy Garajeu, Mihail Idiart, Martín Ignacio |
| author_role |
author |
| author2 |
Vincent, Pierre Guy Garajeu, Mihail Idiart, Martín Ignacio |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
CRYSTALLINE SOLIDS HOMOGENIZATION MICROMECHANICS POROSITY VISCOPLASTICITY |
| topic |
CRYSTALLINE SOLIDS HOMOGENIZATION MICROMECHANICS POROSITY VISCOPLASTICITY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are considered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and bounding from above the corresponding dissipation potential à la Gurson. The second approach consists in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a periodic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement between all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crystal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some deficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, even for relatively strong plastic anisotropies. Fil: Joëssel, Louis. Institut de Radioprotection Et de Sureté Nucléaire; Francia Fil: Vincent, Pierre Guy. Institut de Radioprotection Et de Sureté Nucléaire; Francia Fil: Garajeu, Mihail. Centre National de la Recherche Scientifique; Francia. Aix Marseille Universite; Francia Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
| description |
A micromechanical study of the viscoplasticity of voided cubic crystals is presented. The microscopic void distribution is isotropic and the macroscopic loading is hydrostatic. Three different approaches are considered. The first approach consists in idealizing the voided crystal as a hollow sphere assemblage and bounding from above the corresponding dissipation potential à la Gurson. The second approach consists in idealizing the voided crystal as a sequential laminate of infinite rank and computing the corresponding dissipation potential exactly. Finally, the third approach consists in idealizing the voided crystal as a periodic medium with a complex unit cell and computing the mechanical fields numerically via a Fast Fourier Transform (FFT) algorithm. Predictions are reported for a wide range of crystals deforming by power-law creep and rate-independent plasticity. When the plastic anisotropy is weak, a fairly good agreement between all three approaches is observed. When the plastic anisotropy is strong, by contrast, discrepancies arise. In the extreme case of plastically deficient crystals, the various predictions can exhibit different asymptotics. While estimates based on hollow-sphere assemblages predict that any deficient voided crystal is rigid under hydrostatic loading, FFT simulations and sequential laminates suggest that some deficient voided crystals with more than two linearly independent systems may dilate. Overall, estimates based on sequential laminates are found to be superior to Gurson-type estimates based on hollow sphere assemblages and to predict the hydrostatic response of cubic voided crystals with reasonable accuracy, even for relatively strong plastic anisotropies. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100051 Joëssel, Louis; Vincent, Pierre Guy; Garajeu, Mihail; Idiart, Martín Ignacio; Viscoplasticity of voided cubic crystals under hydrostatic loading; Pergamon-Elsevier Science Ltd; International Journal Of Solids And Structures; 147; 8-2018; 156-165 0020-7683 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/100051 |
| identifier_str_mv |
Joëssel, Louis; Vincent, Pierre Guy; Garajeu, Mihail; Idiart, Martín Ignacio; Viscoplasticity of voided cubic crystals under hydrostatic loading; Pergamon-Elsevier Science Ltd; International Journal Of Solids And Structures; 147; 8-2018; 156-165 0020-7683 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020768318302166 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2018.05.022 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781216088391680 |
| score |
12.982451 |