A model problem concerning ionic transport in microstructured solid electrolytes

Autores
Curto Sillamoni, Ignacio José; Idiart, Martín Ignacio
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.
Fil: Curto Sillamoni, Ignacio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina
Fil: Idiart, Martín Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina
Materia
Diffusion
Heterogeneous Solids
Interphases
Migration
Periodic Homogenization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/77600

id CONICETDig_c7245f24f0917cf38ab8cb09e64ec8f9
oai_identifier_str oai:ri.conicet.gov.ar:11336/77600
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A model problem concerning ionic transport in microstructured solid electrolytesCurto Sillamoni, Ignacio JoséIdiart, Martín IgnacioDiffusionHeterogeneous SolidsInterphasesMigrationPeriodic Homogenizationhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.Fil: Curto Sillamoni, Ignacio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; ArgentinaFil: Idiart, Martín Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; ArgentinaSpringer2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77600Curto Sillamoni, Ignacio José; Idiart, Martín Ignacio; A model problem concerning ionic transport in microstructured solid electrolytes; Springer; Continuum Mechanics And Thermodynamics; 27; 6; 11-2015; 941-9570935-11751432-0959CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00161-014-0391-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00161-014-0391-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:50Zoai:ri.conicet.gov.ar:11336/77600instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:51.202CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A model problem concerning ionic transport in microstructured solid electrolytes
title A model problem concerning ionic transport in microstructured solid electrolytes
spellingShingle A model problem concerning ionic transport in microstructured solid electrolytes
Curto Sillamoni, Ignacio José
Diffusion
Heterogeneous Solids
Interphases
Migration
Periodic Homogenization
title_short A model problem concerning ionic transport in microstructured solid electrolytes
title_full A model problem concerning ionic transport in microstructured solid electrolytes
title_fullStr A model problem concerning ionic transport in microstructured solid electrolytes
title_full_unstemmed A model problem concerning ionic transport in microstructured solid electrolytes
title_sort A model problem concerning ionic transport in microstructured solid electrolytes
dc.creator.none.fl_str_mv Curto Sillamoni, Ignacio José
Idiart, Martín Ignacio
author Curto Sillamoni, Ignacio José
author_facet Curto Sillamoni, Ignacio José
Idiart, Martín Ignacio
author_role author
author2 Idiart, Martín Ignacio
author2_role author
dc.subject.none.fl_str_mv Diffusion
Heterogeneous Solids
Interphases
Migration
Periodic Homogenization
topic Diffusion
Heterogeneous Solids
Interphases
Migration
Periodic Homogenization
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.
Fil: Curto Sillamoni, Ignacio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina
Fil: Idiart, Martín Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina
description We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/77600
Curto Sillamoni, Ignacio José; Idiart, Martín Ignacio; A model problem concerning ionic transport in microstructured solid electrolytes; Springer; Continuum Mechanics And Thermodynamics; 27; 6; 11-2015; 941-957
0935-1175
1432-0959
CONICET Digital
CONICET
url http://hdl.handle.net/11336/77600
identifier_str_mv Curto Sillamoni, Ignacio José; Idiart, Martín Ignacio; A model problem concerning ionic transport in microstructured solid electrolytes; Springer; Continuum Mechanics And Thermodynamics; 27; 6; 11-2015; 941-957
0935-1175
1432-0959
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00161-014-0391-4
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00161-014-0391-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613750259187712
score 13.070432