Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling
- Autores
- Massaccesi, Gustavo Ernesto; Oña, Ofelia Beatriz; Capuzzi, Pablo; Melo, Juan Ignacio; Lain, Luis; Torre, Alicia; Peralta, Juan E.; Alcoba, Diego Ricardo; Scuseria, Gustavo E.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The N-representability problem consists in determining whether, for a given p-body matrix, there exists at least one N-body density matrix from which the p-body matrix can be obtained by contraction, that is, if the given matrix is a p-body reduced density matrix (p-RDM). The knowledge of all necessary and sufficient conditions for a p-body matrix to be N-representable allows the constrained minimization of a many-body Hamiltonian expectation value with respect to the p-body density matrix and, thus, the determination of its exact ground state. However, the number of constraints that complete the N-representability conditions grows exponentially with system size, and hence, the procedure quickly becomes intractable for practical applications. This work introduces a hybrid quantum-stochastic algorithm to effectively replace the N-representability conditions. The algorithm consists of applying to an initial N-body density matrix a sequence of unitary evolution operators constructed from a stochastic process that successively approaches the reduced state of the density matrix on a p-body subsystem, represented by a p-RDM, to a target p-body matrix, potentially a p-RDM. The generators of the evolution operators follow the well-known adaptive derivative-assembled pseudo-Trotter method (ADAPT), while the stochastic component is implemented by using a simulated annealing process. The resulting algorithm is independent of any underlying Hamiltonian, and it can be used to decide whether a given p-body matrix is N-representable, establishing a criterion to determine its quality and correcting it. We apply the proposed hybrid ADAPT algorithm to alleged reduced density matrices from a quantum chemistry electronic Hamiltonian, from the reduced Bardeen–Cooper–Schrieffer model with constant pairing, and from the Heisenberg XXZ spin model. In all cases, the proposed method behaves as expected for 1-RDMs and 2-RDMs, evolving the initial matrices toward different targets.
Fil: Massaccesi, Gustavo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Oña, Ofelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Capuzzi, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Melo, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lain, Luis. Universidad del País Vasco; España
Fil: Torre, Alicia. Universidad del País Vasco; España
Fil: Peralta, Juan E.. University of Michigan; Estados Unidos
Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Scuseria, Gustavo E.. Rice University; Estados Unidos - Materia
- N‑Representability
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/266157
Ver los metadatos del registro completo
| id |
CONICETDig_b7b89462174702a8bf0a1252c380c294 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/266157 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic SamplingMassaccesi, Gustavo ErnestoOña, Ofelia BeatrizCapuzzi, PabloMelo, Juan IgnacioLain, LuisTorre, AliciaPeralta, Juan E.Alcoba, Diego RicardoScuseria, Gustavo E.N‑Representabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The N-representability problem consists in determining whether, for a given p-body matrix, there exists at least one N-body density matrix from which the p-body matrix can be obtained by contraction, that is, if the given matrix is a p-body reduced density matrix (p-RDM). The knowledge of all necessary and sufficient conditions for a p-body matrix to be N-representable allows the constrained minimization of a many-body Hamiltonian expectation value with respect to the p-body density matrix and, thus, the determination of its exact ground state. However, the number of constraints that complete the N-representability conditions grows exponentially with system size, and hence, the procedure quickly becomes intractable for practical applications. This work introduces a hybrid quantum-stochastic algorithm to effectively replace the N-representability conditions. The algorithm consists of applying to an initial N-body density matrix a sequence of unitary evolution operators constructed from a stochastic process that successively approaches the reduced state of the density matrix on a p-body subsystem, represented by a p-RDM, to a target p-body matrix, potentially a p-RDM. The generators of the evolution operators follow the well-known adaptive derivative-assembled pseudo-Trotter method (ADAPT), while the stochastic component is implemented by using a simulated annealing process. The resulting algorithm is independent of any underlying Hamiltonian, and it can be used to decide whether a given p-body matrix is N-representable, establishing a criterion to determine its quality and correcting it. We apply the proposed hybrid ADAPT algorithm to alleged reduced density matrices from a quantum chemistry electronic Hamiltonian, from the reduced Bardeen–Cooper–Schrieffer model with constant pairing, and from the Heisenberg XXZ spin model. In all cases, the proposed method behaves as expected for 1-RDMs and 2-RDMs, evolving the initial matrices toward different targets.Fil: Massaccesi, Gustavo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Oña, Ofelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Capuzzi, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Melo, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lain, Luis. Universidad del País Vasco; EspañaFil: Torre, Alicia. Universidad del País Vasco; EspañaFil: Peralta, Juan E.. University of Michigan; Estados UnidosFil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Scuseria, Gustavo E.. Rice University; Estados UnidosAmerican Chemical Society2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266157Massaccesi, Gustavo Ernesto; Oña, Ofelia Beatriz; Capuzzi, Pablo; Melo, Juan Ignacio; Lain, Luis; et al.; Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling; American Chemical Society; Journal of Chemical Theory and Computation; 20; 22; 11-2024; 9968-99761549-9618CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jctc.4c01166info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.4c01166info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:55:55Zoai:ri.conicet.gov.ar:11336/266157instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:55:55.845CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling |
| title |
Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling |
| spellingShingle |
Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling Massaccesi, Gustavo Ernesto N‑Representability |
| title_short |
Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling |
| title_full |
Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling |
| title_fullStr |
Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling |
| title_full_unstemmed |
Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling |
| title_sort |
Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling |
| dc.creator.none.fl_str_mv |
Massaccesi, Gustavo Ernesto Oña, Ofelia Beatriz Capuzzi, Pablo Melo, Juan Ignacio Lain, Luis Torre, Alicia Peralta, Juan E. Alcoba, Diego Ricardo Scuseria, Gustavo E. |
| author |
Massaccesi, Gustavo Ernesto |
| author_facet |
Massaccesi, Gustavo Ernesto Oña, Ofelia Beatriz Capuzzi, Pablo Melo, Juan Ignacio Lain, Luis Torre, Alicia Peralta, Juan E. Alcoba, Diego Ricardo Scuseria, Gustavo E. |
| author_role |
author |
| author2 |
Oña, Ofelia Beatriz Capuzzi, Pablo Melo, Juan Ignacio Lain, Luis Torre, Alicia Peralta, Juan E. Alcoba, Diego Ricardo Scuseria, Gustavo E. |
| author2_role |
author author author author author author author author |
| dc.subject.none.fl_str_mv |
N‑Representability |
| topic |
N‑Representability |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The N-representability problem consists in determining whether, for a given p-body matrix, there exists at least one N-body density matrix from which the p-body matrix can be obtained by contraction, that is, if the given matrix is a p-body reduced density matrix (p-RDM). The knowledge of all necessary and sufficient conditions for a p-body matrix to be N-representable allows the constrained minimization of a many-body Hamiltonian expectation value with respect to the p-body density matrix and, thus, the determination of its exact ground state. However, the number of constraints that complete the N-representability conditions grows exponentially with system size, and hence, the procedure quickly becomes intractable for practical applications. This work introduces a hybrid quantum-stochastic algorithm to effectively replace the N-representability conditions. The algorithm consists of applying to an initial N-body density matrix a sequence of unitary evolution operators constructed from a stochastic process that successively approaches the reduced state of the density matrix on a p-body subsystem, represented by a p-RDM, to a target p-body matrix, potentially a p-RDM. The generators of the evolution operators follow the well-known adaptive derivative-assembled pseudo-Trotter method (ADAPT), while the stochastic component is implemented by using a simulated annealing process. The resulting algorithm is independent of any underlying Hamiltonian, and it can be used to decide whether a given p-body matrix is N-representable, establishing a criterion to determine its quality and correcting it. We apply the proposed hybrid ADAPT algorithm to alleged reduced density matrices from a quantum chemistry electronic Hamiltonian, from the reduced Bardeen–Cooper–Schrieffer model with constant pairing, and from the Heisenberg XXZ spin model. In all cases, the proposed method behaves as expected for 1-RDMs and 2-RDMs, evolving the initial matrices toward different targets. Fil: Massaccesi, Gustavo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Oña, Ofelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Capuzzi, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Melo, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Lain, Luis. Universidad del País Vasco; España Fil: Torre, Alicia. Universidad del País Vasco; España Fil: Peralta, Juan E.. University of Michigan; Estados Unidos Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Scuseria, Gustavo E.. Rice University; Estados Unidos |
| description |
The N-representability problem consists in determining whether, for a given p-body matrix, there exists at least one N-body density matrix from which the p-body matrix can be obtained by contraction, that is, if the given matrix is a p-body reduced density matrix (p-RDM). The knowledge of all necessary and sufficient conditions for a p-body matrix to be N-representable allows the constrained minimization of a many-body Hamiltonian expectation value with respect to the p-body density matrix and, thus, the determination of its exact ground state. However, the number of constraints that complete the N-representability conditions grows exponentially with system size, and hence, the procedure quickly becomes intractable for practical applications. This work introduces a hybrid quantum-stochastic algorithm to effectively replace the N-representability conditions. The algorithm consists of applying to an initial N-body density matrix a sequence of unitary evolution operators constructed from a stochastic process that successively approaches the reduced state of the density matrix on a p-body subsystem, represented by a p-RDM, to a target p-body matrix, potentially a p-RDM. The generators of the evolution operators follow the well-known adaptive derivative-assembled pseudo-Trotter method (ADAPT), while the stochastic component is implemented by using a simulated annealing process. The resulting algorithm is independent of any underlying Hamiltonian, and it can be used to decide whether a given p-body matrix is N-representable, establishing a criterion to determine its quality and correcting it. We apply the proposed hybrid ADAPT algorithm to alleged reduced density matrices from a quantum chemistry electronic Hamiltonian, from the reduced Bardeen–Cooper–Schrieffer model with constant pairing, and from the Heisenberg XXZ spin model. In all cases, the proposed method behaves as expected for 1-RDMs and 2-RDMs, evolving the initial matrices toward different targets. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/266157 Massaccesi, Gustavo Ernesto; Oña, Ofelia Beatriz; Capuzzi, Pablo; Melo, Juan Ignacio; Lain, Luis; et al.; Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling; American Chemical Society; Journal of Chemical Theory and Computation; 20; 22; 11-2024; 9968-9976 1549-9618 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/266157 |
| identifier_str_mv |
Massaccesi, Gustavo Ernesto; Oña, Ofelia Beatriz; Capuzzi, Pablo; Melo, Juan Ignacio; Lain, Luis; et al.; Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling; American Chemical Society; Journal of Chemical Theory and Computation; 20; 22; 11-2024; 9968-9976 1549-9618 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jctc.4c01166 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.4c01166 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598312857370624 |
| score |
12.976206 |