A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions
- Autores
- Lanzarotti, Esteban Omar; Roslan, Francisco; Groisman, Leandro; Santi, Lucio Emilio; Castro, Rodrigo Daniel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In the quest to better understand the epidemic dynamics of COVID-19 and possible strategies to mitigate its impact, a wide range of simulation models have been developed for various purposes. Faced with a novel disease with little-known characteristics and an unprecedented impact, the need arises to model multiple aspects with very dissimilar dynamics in a consistent, formal, yet flexible and quick way, in order to then study the combined interaction of these dynamics. We present an agent-based model combining kinematic movement of agents, interaction between them and their surrounding space and a top-down control over the entire population. To achieve this, we extend the retQSS framework to model and simulate particle systems interacting with geometries. In this work, we study different contact tracing strategies and their efficacy in a population undergoing an epidemic process driven mainly by airborne infections in indoor environments.
Fil: Lanzarotti, Esteban Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Roslan, Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Groisman, Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Santi, Lucio Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Winter Simulation Conference 2021: Simulation for a Smart World: From Smart Devices to Smart Cities
Phoenix
Estados Unidos
Organizing Committee of Simulation Conference - Materia
-
Agent Based Models
COVID-19
Hybrid Models
Particle Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154351
Ver los metadatos del registro completo
id |
CONICETDig_b7a57c06ca0e5b0b7f76cf5ebd54be64 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154351 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagionsLanzarotti, Esteban OmarRoslan, FranciscoGroisman, LeandroSanti, Lucio EmilioCastro, Rodrigo DanielAgent Based ModelsCOVID-19Hybrid ModelsParticle Systemshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the quest to better understand the epidemic dynamics of COVID-19 and possible strategies to mitigate its impact, a wide range of simulation models have been developed for various purposes. Faced with a novel disease with little-known characteristics and an unprecedented impact, the need arises to model multiple aspects with very dissimilar dynamics in a consistent, formal, yet flexible and quick way, in order to then study the combined interaction of these dynamics. We present an agent-based model combining kinematic movement of agents, interaction between them and their surrounding space and a top-down control over the entire population. To achieve this, we extend the retQSS framework to model and simulate particle systems interacting with geometries. In this work, we study different contact tracing strategies and their efficacy in a population undergoing an epidemic process driven mainly by airborne infections in indoor environments.Fil: Lanzarotti, Esteban Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Roslan, Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Groisman, Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Santi, Lucio Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaWinter Simulation Conference 2021: Simulation for a Smart World: From Smart Devices to Smart CitiesPhoenixEstados UnidosOrganizing Committee of Simulation ConferenceACMKim, S.Feng, B.Smith, K.Masoud, S.Zheng, Z.Szabo, C.Loper, M.2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154351A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions; Winter Simulation Conference 2021: Simulation for a Smart World: From Smart Devices to Smart Cities; Phoenix; Estados Unidos; 2021; 1-12CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ssl.linklings.net/conferences/wsc/wsc2021_program/views/at_a_glance.htmlInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:20Zoai:ri.conicet.gov.ar:11336/154351instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:20.952CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions |
title |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions |
spellingShingle |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions Lanzarotti, Esteban Omar Agent Based Models COVID-19 Hybrid Models Particle Systems |
title_short |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions |
title_full |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions |
title_fullStr |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions |
title_full_unstemmed |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions |
title_sort |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions |
dc.creator.none.fl_str_mv |
Lanzarotti, Esteban Omar Roslan, Francisco Groisman, Leandro Santi, Lucio Emilio Castro, Rodrigo Daniel |
author |
Lanzarotti, Esteban Omar |
author_facet |
Lanzarotti, Esteban Omar Roslan, Francisco Groisman, Leandro Santi, Lucio Emilio Castro, Rodrigo Daniel |
author_role |
author |
author2 |
Roslan, Francisco Groisman, Leandro Santi, Lucio Emilio Castro, Rodrigo Daniel |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Kim, S. Feng, B. Smith, K. Masoud, S. Zheng, Z. Szabo, C. Loper, M. |
dc.subject.none.fl_str_mv |
Agent Based Models COVID-19 Hybrid Models Particle Systems |
topic |
Agent Based Models COVID-19 Hybrid Models Particle Systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the quest to better understand the epidemic dynamics of COVID-19 and possible strategies to mitigate its impact, a wide range of simulation models have been developed for various purposes. Faced with a novel disease with little-known characteristics and an unprecedented impact, the need arises to model multiple aspects with very dissimilar dynamics in a consistent, formal, yet flexible and quick way, in order to then study the combined interaction of these dynamics. We present an agent-based model combining kinematic movement of agents, interaction between them and their surrounding space and a top-down control over the entire population. To achieve this, we extend the retQSS framework to model and simulate particle systems interacting with geometries. In this work, we study different contact tracing strategies and their efficacy in a population undergoing an epidemic process driven mainly by airborne infections in indoor environments. Fil: Lanzarotti, Esteban Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Roslan, Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Groisman, Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Santi, Lucio Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Winter Simulation Conference 2021: Simulation for a Smart World: From Smart Devices to Smart Cities Phoenix Estados Unidos Organizing Committee of Simulation Conference |
description |
In the quest to better understand the epidemic dynamics of COVID-19 and possible strategies to mitigate its impact, a wide range of simulation models have been developed for various purposes. Faced with a novel disease with little-known characteristics and an unprecedented impact, the need arises to model multiple aspects with very dissimilar dynamics in a consistent, formal, yet flexible and quick way, in order to then study the combined interaction of these dynamics. We present an agent-based model combining kinematic movement of agents, interaction between them and their surrounding space and a top-down control over the entire population. To achieve this, we extend the retQSS framework to model and simulate particle systems interacting with geometries. In this work, we study different contact tracing strategies and their efficacy in a population undergoing an epidemic process driven mainly by airborne infections in indoor environments. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154351 A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions; Winter Simulation Conference 2021: Simulation for a Smart World: From Smart Devices to Smart Cities; Phoenix; Estados Unidos; 2021; 1-12 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154351 |
identifier_str_mv |
A multi-aspect agent-based model of covid-19: disease dynamics, contact tracing interventions and shared space-driven contagions; Winter Simulation Conference 2021: Simulation for a Smart World: From Smart Devices to Smart Cities; Phoenix; Estados Unidos; 2021; 1-12 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ssl.linklings.net/conferences/wsc/wsc2021_program/views/at_a_glance.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
ACM |
publisher.none.fl_str_mv |
ACM |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614359885545472 |
score |
13.070432 |