Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides
- Autores
- Goodarzi, Mohammad; Ortiz, Erlinda del Valle; Coelho, Leandro dos S.; Duchowicz, Pablo Román
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work aims to predict the air to water partitioning for 96 organic pesticides by means of the Quantitative StructureeProperty Relationships Theory. After performing structural feature selection with Genetics Algorithms and Replacement Method linear approaches, it is found that among the most important molecular features appears the Moriguchi octanolewater partition coefficient, and higher lipophilicities would lead to compounds having higher Henry’s law constants. We also compare the statistical performance achieved by four fully-connected Feed-Forward Multilayer Perceptrons Artificial Neural Networks. The statistical results found reveal that the best performing model uses the LevenbergeMarquardt with Bayesian regularization (BR) weighting function for achieving the most accurate predictions.
Fil: Goodarzi, Mohammad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Ortiz, Erlinda del Valle. Universidad Nacional de Catamarca. Facultad de Tecnología y Ciencias Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Coelho, Leandro dos S.. Universidade Estadual Do Parana (unespar);
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
QSPR-QSAR Theory
Replacement method
Artificial neural networks
Henrys law constant
Dragon molecular descriptors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/281311
Ver los metadatos del registro completo
| id |
CONICETDig_b74c39a9131e67858268317a4e236707 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/281311 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticidesGoodarzi, MohammadOrtiz, Erlinda del ValleCoelho, Leandro dos S.Duchowicz, Pablo RománQSPR-QSAR TheoryReplacement methodArtificial neural networksHenrys law constantDragon molecular descriptorshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This work aims to predict the air to water partitioning for 96 organic pesticides by means of the Quantitative StructureeProperty Relationships Theory. After performing structural feature selection with Genetics Algorithms and Replacement Method linear approaches, it is found that among the most important molecular features appears the Moriguchi octanolewater partition coefficient, and higher lipophilicities would lead to compounds having higher Henry’s law constants. We also compare the statistical performance achieved by four fully-connected Feed-Forward Multilayer Perceptrons Artificial Neural Networks. The statistical results found reveal that the best performing model uses the LevenbergeMarquardt with Bayesian regularization (BR) weighting function for achieving the most accurate predictions.Fil: Goodarzi, Mohammad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Ortiz, Erlinda del Valle. Universidad Nacional de Catamarca. Facultad de Tecnología y Ciencias Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Coelho, Leandro dos S.. Universidade Estadual Do Parana (unespar);Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaPergamon-Elsevier Science Ltd2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/281311Goodarzi, Mohammad; Ortiz, Erlinda del Valle; Coelho, Leandro dos S.; Duchowicz, Pablo Román; Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 44; 26; 5-2010; 3179-31861352-2310CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1352231010003985info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2010.05.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-11T12:05:11Zoai:ri.conicet.gov.ar:11336/281311instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-11 12:05:11.327CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides |
| title |
Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides |
| spellingShingle |
Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides Goodarzi, Mohammad QSPR-QSAR Theory Replacement method Artificial neural networks Henrys law constant Dragon molecular descriptors |
| title_short |
Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides |
| title_full |
Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides |
| title_fullStr |
Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides |
| title_full_unstemmed |
Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides |
| title_sort |
Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides |
| dc.creator.none.fl_str_mv |
Goodarzi, Mohammad Ortiz, Erlinda del Valle Coelho, Leandro dos S. Duchowicz, Pablo Román |
| author |
Goodarzi, Mohammad |
| author_facet |
Goodarzi, Mohammad Ortiz, Erlinda del Valle Coelho, Leandro dos S. Duchowicz, Pablo Román |
| author_role |
author |
| author2 |
Ortiz, Erlinda del Valle Coelho, Leandro dos S. Duchowicz, Pablo Román |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
QSPR-QSAR Theory Replacement method Artificial neural networks Henrys law constant Dragon molecular descriptors |
| topic |
QSPR-QSAR Theory Replacement method Artificial neural networks Henrys law constant Dragon molecular descriptors |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
This work aims to predict the air to water partitioning for 96 organic pesticides by means of the Quantitative StructureeProperty Relationships Theory. After performing structural feature selection with Genetics Algorithms and Replacement Method linear approaches, it is found that among the most important molecular features appears the Moriguchi octanolewater partition coefficient, and higher lipophilicities would lead to compounds having higher Henry’s law constants. We also compare the statistical performance achieved by four fully-connected Feed-Forward Multilayer Perceptrons Artificial Neural Networks. The statistical results found reveal that the best performing model uses the LevenbergeMarquardt with Bayesian regularization (BR) weighting function for achieving the most accurate predictions. Fil: Goodarzi, Mohammad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Ortiz, Erlinda del Valle. Universidad Nacional de Catamarca. Facultad de Tecnología y Ciencias Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Coelho, Leandro dos S.. Universidade Estadual Do Parana (unespar); Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
| description |
This work aims to predict the air to water partitioning for 96 organic pesticides by means of the Quantitative StructureeProperty Relationships Theory. After performing structural feature selection with Genetics Algorithms and Replacement Method linear approaches, it is found that among the most important molecular features appears the Moriguchi octanolewater partition coefficient, and higher lipophilicities would lead to compounds having higher Henry’s law constants. We also compare the statistical performance achieved by four fully-connected Feed-Forward Multilayer Perceptrons Artificial Neural Networks. The statistical results found reveal that the best performing model uses the LevenbergeMarquardt with Bayesian regularization (BR) weighting function for achieving the most accurate predictions. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/281311 Goodarzi, Mohammad; Ortiz, Erlinda del Valle; Coelho, Leandro dos S.; Duchowicz, Pablo Román; Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 44; 26; 5-2010; 3179-3186 1352-2310 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/281311 |
| identifier_str_mv |
Goodarzi, Mohammad; Ortiz, Erlinda del Valle; Coelho, Leandro dos S.; Duchowicz, Pablo Román; Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 44; 26; 5-2010; 3179-3186 1352-2310 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1352231010003985 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2010.05.025 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856945305220546560 |
| score |
12.930639 |