Entanglement in fermion systems

Autores
Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze the problem of quantifying entanglement in pure and mixed states of fermionic systems with a fixed number parity yet not necessarily a fixed particle number. The mode entanglement between one single-particle level and its orthogonal complement is first considered, and an entanglement entropy for such a partition of a particular basis of the single-particle Hilbert space H is defined. The sum over all single-particle modes of this entropy is introduced as a measure of the total entanglement of the system with respect to the chosen basis and it is shown that its minimum over all bases of H is a function of the one-body density matrix. Furthermore, we show that if minimization is extended to all bases related through a Bogoliubov transformation, then the entanglement entropy is a function of the generalized one-body density matrix. These results are then used to quantify entanglement in fermion systems with four single-particle levels. For general pure states of such a system a closed expression for the fermionic concurrence is derived, which generalizes the Slater correlation measure defined by J. Schliemann et al. [Phys. Rev. A 64, 022303 (2001)PLRAAN1050-294710.1103/PhysRevA.64.022303], implying that particle entanglement may be seen as minimum mode entanglement. It is also shown that the entanglement entropy defined before is related to this concurrence by an expression analogous to that in the two-qubit case. For mixed states of this system the convex roof extension of the previous concurrence and entanglement entropy is evaluated analytically, extending the results in previous reference to general states.
Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Entanglement
Fermionic Systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/181412

id CONICETDig_b7467a662951852b277269f92c49e3e1
oai_identifier_str oai:ri.conicet.gov.ar:11336/181412
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Entanglement in fermion systemsGigena, Nicolás AlejandroRossignoli, Raúl DanteEntanglementFermionic Systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze the problem of quantifying entanglement in pure and mixed states of fermionic systems with a fixed number parity yet not necessarily a fixed particle number. The mode entanglement between one single-particle level and its orthogonal complement is first considered, and an entanglement entropy for such a partition of a particular basis of the single-particle Hilbert space H is defined. The sum over all single-particle modes of this entropy is introduced as a measure of the total entanglement of the system with respect to the chosen basis and it is shown that its minimum over all bases of H is a function of the one-body density matrix. Furthermore, we show that if minimization is extended to all bases related through a Bogoliubov transformation, then the entanglement entropy is a function of the generalized one-body density matrix. These results are then used to quantify entanglement in fermion systems with four single-particle levels. For general pure states of such a system a closed expression for the fermionic concurrence is derived, which generalizes the Slater correlation measure defined by J. Schliemann et al. [Phys. Rev. A 64, 022303 (2001)PLRAAN1050-294710.1103/PhysRevA.64.022303], implying that particle entanglement may be seen as minimum mode entanglement. It is also shown that the entanglement entropy defined before is related to this concurrence by an expression analogous to that in the two-qubit case. For mixed states of this system the convex roof extension of the previous concurrence and entanglement entropy is evaluated analytically, extending the results in previous reference to general states.Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Physical Society2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181412Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Entanglement in fermion systems; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 92; 4; 10-2015; 423261-4232691050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.92.042326info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.042326info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.05970v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:24Zoai:ri.conicet.gov.ar:11336/181412instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:24.397CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Entanglement in fermion systems
title Entanglement in fermion systems
spellingShingle Entanglement in fermion systems
Gigena, Nicolás Alejandro
Entanglement
Fermionic Systems
title_short Entanglement in fermion systems
title_full Entanglement in fermion systems
title_fullStr Entanglement in fermion systems
title_full_unstemmed Entanglement in fermion systems
title_sort Entanglement in fermion systems
dc.creator.none.fl_str_mv Gigena, Nicolás Alejandro
Rossignoli, Raúl Dante
author Gigena, Nicolás Alejandro
author_facet Gigena, Nicolás Alejandro
Rossignoli, Raúl Dante
author_role author
author2 Rossignoli, Raúl Dante
author2_role author
dc.subject.none.fl_str_mv Entanglement
Fermionic Systems
topic Entanglement
Fermionic Systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze the problem of quantifying entanglement in pure and mixed states of fermionic systems with a fixed number parity yet not necessarily a fixed particle number. The mode entanglement between one single-particle level and its orthogonal complement is first considered, and an entanglement entropy for such a partition of a particular basis of the single-particle Hilbert space H is defined. The sum over all single-particle modes of this entropy is introduced as a measure of the total entanglement of the system with respect to the chosen basis and it is shown that its minimum over all bases of H is a function of the one-body density matrix. Furthermore, we show that if minimization is extended to all bases related through a Bogoliubov transformation, then the entanglement entropy is a function of the generalized one-body density matrix. These results are then used to quantify entanglement in fermion systems with four single-particle levels. For general pure states of such a system a closed expression for the fermionic concurrence is derived, which generalizes the Slater correlation measure defined by J. Schliemann et al. [Phys. Rev. A 64, 022303 (2001)PLRAAN1050-294710.1103/PhysRevA.64.022303], implying that particle entanglement may be seen as minimum mode entanglement. It is also shown that the entanglement entropy defined before is related to this concurrence by an expression analogous to that in the two-qubit case. For mixed states of this system the convex roof extension of the previous concurrence and entanglement entropy is evaluated analytically, extending the results in previous reference to general states.
Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We analyze the problem of quantifying entanglement in pure and mixed states of fermionic systems with a fixed number parity yet not necessarily a fixed particle number. The mode entanglement between one single-particle level and its orthogonal complement is first considered, and an entanglement entropy for such a partition of a particular basis of the single-particle Hilbert space H is defined. The sum over all single-particle modes of this entropy is introduced as a measure of the total entanglement of the system with respect to the chosen basis and it is shown that its minimum over all bases of H is a function of the one-body density matrix. Furthermore, we show that if minimization is extended to all bases related through a Bogoliubov transformation, then the entanglement entropy is a function of the generalized one-body density matrix. These results are then used to quantify entanglement in fermion systems with four single-particle levels. For general pure states of such a system a closed expression for the fermionic concurrence is derived, which generalizes the Slater correlation measure defined by J. Schliemann et al. [Phys. Rev. A 64, 022303 (2001)PLRAAN1050-294710.1103/PhysRevA.64.022303], implying that particle entanglement may be seen as minimum mode entanglement. It is also shown that the entanglement entropy defined before is related to this concurrence by an expression analogous to that in the two-qubit case. For mixed states of this system the convex roof extension of the previous concurrence and entanglement entropy is evaluated analytically, extending the results in previous reference to general states.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/181412
Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Entanglement in fermion systems; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 92; 4; 10-2015; 423261-423269
1050-2947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/181412
identifier_str_mv Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Entanglement in fermion systems; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 92; 4; 10-2015; 423261-423269
1050-2947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.92.042326
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.042326
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.05970v2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268663408754688
score 13.13397