Entanglement in fermion systems
- Autores
- Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze the problem of quantifying entanglement in pure and mixed states of fermionic systems with a fixed number parity yet not necessarily a fixed particle number. The mode entanglement between one single-particle level and its orthogonal complement is first considered, and an entanglement entropy for such a partition of a particular basis of the single-particle Hilbert space H is defined. The sum over all single-particle modes of this entropy is introduced as a measure of the total entanglement of the system with respect to the chosen basis and it is shown that its minimum over all bases of H is a function of the one-body density matrix. Furthermore, we show that if minimization is extended to all bases related through a Bogoliubov transformation, then the entanglement entropy is a function of the generalized one-body density matrix. These results are then used to quantify entanglement in fermion systems with four single-particle levels. For general pure states of such a system a closed expression for the fermionic concurrence is derived, which generalizes the Slater correlation measure defined by J. Schliemann et al. [Phys. Rev. A 64, 022303 (2001)PLRAAN1050-294710.1103/PhysRevA.64.022303], implying that particle entanglement may be seen as minimum mode entanglement. It is also shown that the entanglement entropy defined before is related to this concurrence by an expression analogous to that in the two-qubit case. For mixed states of this system the convex roof extension of the previous concurrence and entanglement entropy is evaluated analytically, extending the results in previous reference to general states.
Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Entanglement
Fermionic Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/181412
Ver los metadatos del registro completo
id |
CONICETDig_b7467a662951852b277269f92c49e3e1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/181412 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entanglement in fermion systemsGigena, Nicolás AlejandroRossignoli, Raúl DanteEntanglementFermionic Systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze the problem of quantifying entanglement in pure and mixed states of fermionic systems with a fixed number parity yet not necessarily a fixed particle number. The mode entanglement between one single-particle level and its orthogonal complement is first considered, and an entanglement entropy for such a partition of a particular basis of the single-particle Hilbert space H is defined. The sum over all single-particle modes of this entropy is introduced as a measure of the total entanglement of the system with respect to the chosen basis and it is shown that its minimum over all bases of H is a function of the one-body density matrix. Furthermore, we show that if minimization is extended to all bases related through a Bogoliubov transformation, then the entanglement entropy is a function of the generalized one-body density matrix. These results are then used to quantify entanglement in fermion systems with four single-particle levels. For general pure states of such a system a closed expression for the fermionic concurrence is derived, which generalizes the Slater correlation measure defined by J. Schliemann et al. [Phys. Rev. A 64, 022303 (2001)PLRAAN1050-294710.1103/PhysRevA.64.022303], implying that particle entanglement may be seen as minimum mode entanglement. It is also shown that the entanglement entropy defined before is related to this concurrence by an expression analogous to that in the two-qubit case. For mixed states of this system the convex roof extension of the previous concurrence and entanglement entropy is evaluated analytically, extending the results in previous reference to general states.Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Physical Society2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181412Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Entanglement in fermion systems; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 92; 4; 10-2015; 423261-4232691050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.92.042326info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.042326info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.05970v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:24Zoai:ri.conicet.gov.ar:11336/181412instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:24.397CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entanglement in fermion systems |
title |
Entanglement in fermion systems |
spellingShingle |
Entanglement in fermion systems Gigena, Nicolás Alejandro Entanglement Fermionic Systems |
title_short |
Entanglement in fermion systems |
title_full |
Entanglement in fermion systems |
title_fullStr |
Entanglement in fermion systems |
title_full_unstemmed |
Entanglement in fermion systems |
title_sort |
Entanglement in fermion systems |
dc.creator.none.fl_str_mv |
Gigena, Nicolás Alejandro Rossignoli, Raúl Dante |
author |
Gigena, Nicolás Alejandro |
author_facet |
Gigena, Nicolás Alejandro Rossignoli, Raúl Dante |
author_role |
author |
author2 |
Rossignoli, Raúl Dante |
author2_role |
author |
dc.subject.none.fl_str_mv |
Entanglement Fermionic Systems |
topic |
Entanglement Fermionic Systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze the problem of quantifying entanglement in pure and mixed states of fermionic systems with a fixed number parity yet not necessarily a fixed particle number. The mode entanglement between one single-particle level and its orthogonal complement is first considered, and an entanglement entropy for such a partition of a particular basis of the single-particle Hilbert space H is defined. The sum over all single-particle modes of this entropy is introduced as a measure of the total entanglement of the system with respect to the chosen basis and it is shown that its minimum over all bases of H is a function of the one-body density matrix. Furthermore, we show that if minimization is extended to all bases related through a Bogoliubov transformation, then the entanglement entropy is a function of the generalized one-body density matrix. These results are then used to quantify entanglement in fermion systems with four single-particle levels. For general pure states of such a system a closed expression for the fermionic concurrence is derived, which generalizes the Slater correlation measure defined by J. Schliemann et al. [Phys. Rev. A 64, 022303 (2001)PLRAAN1050-294710.1103/PhysRevA.64.022303], implying that particle entanglement may be seen as minimum mode entanglement. It is also shown that the entanglement entropy defined before is related to this concurrence by an expression analogous to that in the two-qubit case. For mixed states of this system the convex roof extension of the previous concurrence and entanglement entropy is evaluated analytically, extending the results in previous reference to general states. Fil: Gigena, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Rossignoli, Raúl Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
We analyze the problem of quantifying entanglement in pure and mixed states of fermionic systems with a fixed number parity yet not necessarily a fixed particle number. The mode entanglement between one single-particle level and its orthogonal complement is first considered, and an entanglement entropy for such a partition of a particular basis of the single-particle Hilbert space H is defined. The sum over all single-particle modes of this entropy is introduced as a measure of the total entanglement of the system with respect to the chosen basis and it is shown that its minimum over all bases of H is a function of the one-body density matrix. Furthermore, we show that if minimization is extended to all bases related through a Bogoliubov transformation, then the entanglement entropy is a function of the generalized one-body density matrix. These results are then used to quantify entanglement in fermion systems with four single-particle levels. For general pure states of such a system a closed expression for the fermionic concurrence is derived, which generalizes the Slater correlation measure defined by J. Schliemann et al. [Phys. Rev. A 64, 022303 (2001)PLRAAN1050-294710.1103/PhysRevA.64.022303], implying that particle entanglement may be seen as minimum mode entanglement. It is also shown that the entanglement entropy defined before is related to this concurrence by an expression analogous to that in the two-qubit case. For mixed states of this system the convex roof extension of the previous concurrence and entanglement entropy is evaluated analytically, extending the results in previous reference to general states. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/181412 Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Entanglement in fermion systems; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 92; 4; 10-2015; 423261-423269 1050-2947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/181412 |
identifier_str_mv |
Gigena, Nicolás Alejandro; Rossignoli, Raúl Dante; Entanglement in fermion systems; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 92; 4; 10-2015; 423261-423269 1050-2947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.92.042326 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.042326 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.05970v2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268663408754688 |
score |
13.13397 |