New developments on the geometric nonholonomic integrator
- Autores
- Ferraro, Sebastián José; Jiménez Alburquerque, Fernando; Martin de Diego, David
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we will discuss new developments regarding the geometric nonholonomic integrator (GNI) (Ferraro et al 2008 Nonlinearity 21 1911-28; Ferraro et al 2009 Discrete Contin. Dyn. Syst. (Suppl.) 220-9). GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discrete geometric approach. This method was designed to account for some of the special geometric structures associated to a nonholonomic motion, like preservation of energy, preservation of constraints or the nonholonomic momentum equation. First, we study the GNI versions of the symplectic-Euler methods, paying special attention to their convergence behaviour. Then, we construct an extension of the GNI in the case of affine constraints. Finally, we generalize the proposed method to nonholonomic reduced systems, an important subclass of examples in nonholonomic dynamics. We illustrate the behaviour of the proposed method with the example of the inhomogeneous sphere rolling without slipping on a table.
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Jiménez Alburquerque, Fernando. Universitat Technical Zu Munich; Alemania
Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España - Materia
-
37j60
37m15
37n05
65p10
70-08
Affine Constraints Mathematics Subject Classification: 70f25
Discrete Variational Calculus
Geometric Nonholonomic Integrator
Nonholonomic Mechanics
Reduction by Symmetries - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/77966
Ver los metadatos del registro completo
id |
CONICETDig_b6e4bdca14b5ef5b0d2aadf2feaa8feb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/77966 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
New developments on the geometric nonholonomic integratorFerraro, Sebastián JoséJiménez Alburquerque, FernandoMartin de Diego, David37j6037m1537n0565p1070-08Affine Constraints Mathematics Subject Classification: 70f25Discrete Variational CalculusGeometric Nonholonomic IntegratorNonholonomic MechanicsReduction by Symmetrieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we will discuss new developments regarding the geometric nonholonomic integrator (GNI) (Ferraro et al 2008 Nonlinearity 21 1911-28; Ferraro et al 2009 Discrete Contin. Dyn. Syst. (Suppl.) 220-9). GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discrete geometric approach. This method was designed to account for some of the special geometric structures associated to a nonholonomic motion, like preservation of energy, preservation of constraints or the nonholonomic momentum equation. First, we study the GNI versions of the symplectic-Euler methods, paying special attention to their convergence behaviour. Then, we construct an extension of the GNI in the case of affine constraints. Finally, we generalize the proposed method to nonholonomic reduced systems, an important subclass of examples in nonholonomic dynamics. We illustrate the behaviour of the proposed method with the example of the inhomogeneous sphere rolling without slipping on a table.Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Jiménez Alburquerque, Fernando. Universitat Technical Zu Munich; AlemaniaFil: Martin de Diego, David. Instituto de Ciencias Matemáticas; EspañaIOP Publishing2015-04-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77966Ferraro, Sebastián José; Jiménez Alburquerque, Fernando; Martin de Diego, David; New developments on the geometric nonholonomic integrator; IOP Publishing; Nonlinearity; 28; 4; 25-4-2015; 871-9000951-7715CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0951-7715/28/4/871/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/0951-7715/28/4/871info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:27Zoai:ri.conicet.gov.ar:11336/77966instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:27.483CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
New developments on the geometric nonholonomic integrator |
title |
New developments on the geometric nonholonomic integrator |
spellingShingle |
New developments on the geometric nonholonomic integrator Ferraro, Sebastián José 37j60 37m15 37n05 65p10 70-08 Affine Constraints Mathematics Subject Classification: 70f25 Discrete Variational Calculus Geometric Nonholonomic Integrator Nonholonomic Mechanics Reduction by Symmetries |
title_short |
New developments on the geometric nonholonomic integrator |
title_full |
New developments on the geometric nonholonomic integrator |
title_fullStr |
New developments on the geometric nonholonomic integrator |
title_full_unstemmed |
New developments on the geometric nonholonomic integrator |
title_sort |
New developments on the geometric nonholonomic integrator |
dc.creator.none.fl_str_mv |
Ferraro, Sebastián José Jiménez Alburquerque, Fernando Martin de Diego, David |
author |
Ferraro, Sebastián José |
author_facet |
Ferraro, Sebastián José Jiménez Alburquerque, Fernando Martin de Diego, David |
author_role |
author |
author2 |
Jiménez Alburquerque, Fernando Martin de Diego, David |
author2_role |
author author |
dc.subject.none.fl_str_mv |
37j60 37m15 37n05 65p10 70-08 Affine Constraints Mathematics Subject Classification: 70f25 Discrete Variational Calculus Geometric Nonholonomic Integrator Nonholonomic Mechanics Reduction by Symmetries |
topic |
37j60 37m15 37n05 65p10 70-08 Affine Constraints Mathematics Subject Classification: 70f25 Discrete Variational Calculus Geometric Nonholonomic Integrator Nonholonomic Mechanics Reduction by Symmetries |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we will discuss new developments regarding the geometric nonholonomic integrator (GNI) (Ferraro et al 2008 Nonlinearity 21 1911-28; Ferraro et al 2009 Discrete Contin. Dyn. Syst. (Suppl.) 220-9). GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discrete geometric approach. This method was designed to account for some of the special geometric structures associated to a nonholonomic motion, like preservation of energy, preservation of constraints or the nonholonomic momentum equation. First, we study the GNI versions of the symplectic-Euler methods, paying special attention to their convergence behaviour. Then, we construct an extension of the GNI in the case of affine constraints. Finally, we generalize the proposed method to nonholonomic reduced systems, an important subclass of examples in nonholonomic dynamics. We illustrate the behaviour of the proposed method with the example of the inhomogeneous sphere rolling without slipping on a table. Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Jiménez Alburquerque, Fernando. Universitat Technical Zu Munich; Alemania Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España |
description |
In this paper, we will discuss new developments regarding the geometric nonholonomic integrator (GNI) (Ferraro et al 2008 Nonlinearity 21 1911-28; Ferraro et al 2009 Discrete Contin. Dyn. Syst. (Suppl.) 220-9). GNI is a discretization scheme adapted to nonholonomic mechanical systems through a discrete geometric approach. This method was designed to account for some of the special geometric structures associated to a nonholonomic motion, like preservation of energy, preservation of constraints or the nonholonomic momentum equation. First, we study the GNI versions of the symplectic-Euler methods, paying special attention to their convergence behaviour. Then, we construct an extension of the GNI in the case of affine constraints. Finally, we generalize the proposed method to nonholonomic reduced systems, an important subclass of examples in nonholonomic dynamics. We illustrate the behaviour of the proposed method with the example of the inhomogeneous sphere rolling without slipping on a table. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-25 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/77966 Ferraro, Sebastián José; Jiménez Alburquerque, Fernando; Martin de Diego, David; New developments on the geometric nonholonomic integrator; IOP Publishing; Nonlinearity; 28; 4; 25-4-2015; 871-900 0951-7715 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/77966 |
identifier_str_mv |
Ferraro, Sebastián José; Jiménez Alburquerque, Fernando; Martin de Diego, David; New developments on the geometric nonholonomic integrator; IOP Publishing; Nonlinearity; 28; 4; 25-4-2015; 871-900 0951-7715 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0951-7715/28/4/871/meta info:eu-repo/semantics/altIdentifier/doi/10.1088/0951-7715/28/4/871 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980400297672704 |
score |
12.993085 |