Current Challenges for Big Omics Data Analytics and Precision Medicine
- Autores
- Fernandez, Elmer Andres; Casares, Federico
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ambitious efforts to characterize disease have been made worldwide, mainly in cancer, with initiatives such as the Cancer Genome Atlas. Many of these cost-intensive studies use cutting-edge technologies to delve deeply into the intrinsic genomic, transcriptomic, proteomic, metabolomic, etc, (i.e., omics) type of data to better explain the phenotype. But while more data is being stored, the complexity of cancer seems to challenge even more our ability to understand its nature and thus to uncover useful bio-physiological information. We strongly believe that data analytics, as well as our understanding of ‘normal’ cases, are still in their infancy, opening great opportunities in translational cancer research to pursue precision medicine through Big Omics Data analytics.
Fil: Fernandez, Elmer Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; Argentina
Fil: Casares, Federico. LISRA Institute; Estados Unidos - Materia
-
DATA INTERPRETATION, STATISTICAL
GENOMICS
MICROARRAY ANALYSIS
PROTEOMICS
STATISTICS AS TOPIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/91297
Ver los metadatos del registro completo
| id |
CONICETDig_b6c1c88b7436378163bc18411f49c89c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/91297 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Current Challenges for Big Omics Data Analytics and Precision MedicineFernandez, Elmer AndresCasares, FedericoDATA INTERPRETATION, STATISTICALGENOMICSMICROARRAY ANALYSISPROTEOMICSSTATISTICS AS TOPIChttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3Ambitious efforts to characterize disease have been made worldwide, mainly in cancer, with initiatives such as the Cancer Genome Atlas. Many of these cost-intensive studies use cutting-edge technologies to delve deeply into the intrinsic genomic, transcriptomic, proteomic, metabolomic, etc, (i.e., omics) type of data to better explain the phenotype. But while more data is being stored, the complexity of cancer seems to challenge even more our ability to understand its nature and thus to uncover useful bio-physiological information. We strongly believe that data analytics, as well as our understanding of ‘normal’ cases, are still in their infancy, opening great opportunities in translational cancer research to pursue precision medicine through Big Omics Data analytics.Fil: Fernandez, Elmer Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; ArgentinaFil: Casares, Federico. LISRA Institute; Estados UnidosInternational Scientific Information, Inc.2018-01-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91297Fernandez, Elmer Andres; Casares, Federico; Current Challenges for Big Omics Data Analytics and Precision Medicine; International Scientific Information, Inc.; Medical Science & Technology; 16-1-20182329-0072CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.medscitechnol.com/abstract/index/idArt/908220info:eu-repo/semantics/altIdentifier/doi/10.12659/MST.908220info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:48:48Zoai:ri.conicet.gov.ar:11336/91297instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:48:48.301CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Current Challenges for Big Omics Data Analytics and Precision Medicine |
| title |
Current Challenges for Big Omics Data Analytics and Precision Medicine |
| spellingShingle |
Current Challenges for Big Omics Data Analytics and Precision Medicine Fernandez, Elmer Andres DATA INTERPRETATION, STATISTICAL GENOMICS MICROARRAY ANALYSIS PROTEOMICS STATISTICS AS TOPIC |
| title_short |
Current Challenges for Big Omics Data Analytics and Precision Medicine |
| title_full |
Current Challenges for Big Omics Data Analytics and Precision Medicine |
| title_fullStr |
Current Challenges for Big Omics Data Analytics and Precision Medicine |
| title_full_unstemmed |
Current Challenges for Big Omics Data Analytics and Precision Medicine |
| title_sort |
Current Challenges for Big Omics Data Analytics and Precision Medicine |
| dc.creator.none.fl_str_mv |
Fernandez, Elmer Andres Casares, Federico |
| author |
Fernandez, Elmer Andres |
| author_facet |
Fernandez, Elmer Andres Casares, Federico |
| author_role |
author |
| author2 |
Casares, Federico |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
DATA INTERPRETATION, STATISTICAL GENOMICS MICROARRAY ANALYSIS PROTEOMICS STATISTICS AS TOPIC |
| topic |
DATA INTERPRETATION, STATISTICAL GENOMICS MICROARRAY ANALYSIS PROTEOMICS STATISTICS AS TOPIC |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.4 https://purl.org/becyt/ford/3 |
| dc.description.none.fl_txt_mv |
Ambitious efforts to characterize disease have been made worldwide, mainly in cancer, with initiatives such as the Cancer Genome Atlas. Many of these cost-intensive studies use cutting-edge technologies to delve deeply into the intrinsic genomic, transcriptomic, proteomic, metabolomic, etc, (i.e., omics) type of data to better explain the phenotype. But while more data is being stored, the complexity of cancer seems to challenge even more our ability to understand its nature and thus to uncover useful bio-physiological information. We strongly believe that data analytics, as well as our understanding of ‘normal’ cases, are still in their infancy, opening great opportunities in translational cancer research to pursue precision medicine through Big Omics Data analytics. Fil: Fernandez, Elmer Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; Argentina Fil: Casares, Federico. LISRA Institute; Estados Unidos |
| description |
Ambitious efforts to characterize disease have been made worldwide, mainly in cancer, with initiatives such as the Cancer Genome Atlas. Many of these cost-intensive studies use cutting-edge technologies to delve deeply into the intrinsic genomic, transcriptomic, proteomic, metabolomic, etc, (i.e., omics) type of data to better explain the phenotype. But while more data is being stored, the complexity of cancer seems to challenge even more our ability to understand its nature and thus to uncover useful bio-physiological information. We strongly believe that data analytics, as well as our understanding of ‘normal’ cases, are still in their infancy, opening great opportunities in translational cancer research to pursue precision medicine through Big Omics Data analytics. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-01-16 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/91297 Fernandez, Elmer Andres; Casares, Federico; Current Challenges for Big Omics Data Analytics and Precision Medicine; International Scientific Information, Inc.; Medical Science & Technology; 16-1-2018 2329-0072 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/91297 |
| identifier_str_mv |
Fernandez, Elmer Andres; Casares, Federico; Current Challenges for Big Omics Data Analytics and Precision Medicine; International Scientific Information, Inc.; Medical Science & Technology; 16-1-2018 2329-0072 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.medscitechnol.com/abstract/index/idArt/908220 info:eu-repo/semantics/altIdentifier/doi/10.12659/MST.908220 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
International Scientific Information, Inc. |
| publisher.none.fl_str_mv |
International Scientific Information, Inc. |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598032480731136 |
| score |
13.25334 |