Valve based on novel hydrogels: From synthesis to application
- Autores
- Romero, Marcelo Ricardo; Arrua, Ruben Dario; Alvarez Igarzabal, Cecilia Ines; Emily Hilder, Emily
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- New hydrogels as materials with potential application in the area of actuators have been developed.Hydrogel synthesis was performed using tris[(hydroxymethyl) methyl]acrylamide (NAT) and itaconicacid (ITA) as monomers and (+)N,N-diallyltartradiamide (DAT) as crosslinker. The hydrogels NAT ITAwere prepared using different molar fraction of monomers and characterized by FTIR-ATR, rheology,swelling properties and mechanical force. The hydrogel prepared with 80% and 20% of NAT and ITA,respectively, has the lowest equilibrium swelling ratio (ESR = 16) in water but the highest elastic modulus(10 ± 1 kPa) and strength (2.2 ± 0.1 N by h). The gel strength increased 0.5 N in a half hour, while the volumeincreased 4 times when passed from an acid medium to a basic medium. This hydrogel was chosen toprepare a pH-sensitive valve to control the flux in a capillary tube. The valve was tested using a systemto control the formation of Fe3+EDTA complex. The response time was 3 and 15 min to open and closethe valve, respectively. The flow of the solution through the valve was 11 L by min. The pressure ofthe solution during the closing of the valve was 10 kPa. The continuous opening and closing of the valveinvolves repetitive expansion and collapse of the network that could damage the structure of the network.However, the valve produced a reproducible and stable response. The dynamic hydrogen bonding existingin the polymeric chains of NAT ITA products could assist in the reversible process when the hydrogelswere subjected to repetitive work. The mechanical properties of the gels and self-healing capacity of thenetworks indicated that the products could be applicable in the development of systems for controlleddrug release.
Fil: Romero, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina
Fil: Arrua, Ruben Dario. University Of Tasmania. Faculty Of Science, Engineering & Technology. Departament Of Science; Australia
Fil: Alvarez Igarzabal, Cecilia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina
Fil: Emily Hilder, Emily. University Of Tasmania; Australia - Materia
-
Actuator
Microfluidic Valve
Ph Sensitive Hydrogel
New Materials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/10515
Ver los metadatos del registro completo
id |
CONICETDig_b598135c1aa4f8376ea1474b4e72641c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/10515 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Valve based on novel hydrogels: From synthesis to applicationRomero, Marcelo RicardoArrua, Ruben DarioAlvarez Igarzabal, Cecilia InesEmily Hilder, EmilyActuatorMicrofluidic ValvePh Sensitive HydrogelNew Materialshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1New hydrogels as materials with potential application in the area of actuators have been developed.Hydrogel synthesis was performed using tris[(hydroxymethyl) methyl]acrylamide (NAT) and itaconicacid (ITA) as monomers and (+)N,N-diallyltartradiamide (DAT) as crosslinker. The hydrogels NAT ITAwere prepared using different molar fraction of monomers and characterized by FTIR-ATR, rheology,swelling properties and mechanical force. The hydrogel prepared with 80% and 20% of NAT and ITA,respectively, has the lowest equilibrium swelling ratio (ESR = 16) in water but the highest elastic modulus(10 ± 1 kPa) and strength (2.2 ± 0.1 N by h). The gel strength increased 0.5 N in a half hour, while the volumeincreased 4 times when passed from an acid medium to a basic medium. This hydrogel was chosen toprepare a pH-sensitive valve to control the flux in a capillary tube. The valve was tested using a systemto control the formation of Fe3+EDTA complex. The response time was 3 and 15 min to open and closethe valve, respectively. The flow of the solution through the valve was 11 L by min. The pressure ofthe solution during the closing of the valve was 10 kPa. The continuous opening and closing of the valveinvolves repetitive expansion and collapse of the network that could damage the structure of the network.However, the valve produced a reproducible and stable response. The dynamic hydrogen bonding existingin the polymeric chains of NAT ITA products could assist in the reversible process when the hydrogelswere subjected to repetitive work. The mechanical properties of the gels and self-healing capacity of thenetworks indicated that the products could be applicable in the development of systems for controlleddrug release.Fil: Romero, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Arrua, Ruben Dario. University Of Tasmania. Faculty Of Science, Engineering & Technology. Departament Of Science; AustraliaFil: Alvarez Igarzabal, Cecilia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Emily Hilder, Emily. University Of Tasmania; AustraliaElsevier Science Sa2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10515Romero, Marcelo Ricardo; Arrua, Ruben Dario; Alvarez Igarzabal, Cecilia Ines; Emily Hilder, Emily; Valve based on novel hydrogels: From synthesis to application; Elsevier Science Sa; Sensors And Actuators B: Chemical; 188; 11-2013; 176-1840925-4005enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2013.06.086info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925400513007776info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:10Zoai:ri.conicet.gov.ar:11336/10515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:11.153CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Valve based on novel hydrogels: From synthesis to application |
title |
Valve based on novel hydrogels: From synthesis to application |
spellingShingle |
Valve based on novel hydrogels: From synthesis to application Romero, Marcelo Ricardo Actuator Microfluidic Valve Ph Sensitive Hydrogel New Materials |
title_short |
Valve based on novel hydrogels: From synthesis to application |
title_full |
Valve based on novel hydrogels: From synthesis to application |
title_fullStr |
Valve based on novel hydrogels: From synthesis to application |
title_full_unstemmed |
Valve based on novel hydrogels: From synthesis to application |
title_sort |
Valve based on novel hydrogels: From synthesis to application |
dc.creator.none.fl_str_mv |
Romero, Marcelo Ricardo Arrua, Ruben Dario Alvarez Igarzabal, Cecilia Ines Emily Hilder, Emily |
author |
Romero, Marcelo Ricardo |
author_facet |
Romero, Marcelo Ricardo Arrua, Ruben Dario Alvarez Igarzabal, Cecilia Ines Emily Hilder, Emily |
author_role |
author |
author2 |
Arrua, Ruben Dario Alvarez Igarzabal, Cecilia Ines Emily Hilder, Emily |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Actuator Microfluidic Valve Ph Sensitive Hydrogel New Materials |
topic |
Actuator Microfluidic Valve Ph Sensitive Hydrogel New Materials |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
New hydrogels as materials with potential application in the area of actuators have been developed.Hydrogel synthesis was performed using tris[(hydroxymethyl) methyl]acrylamide (NAT) and itaconicacid (ITA) as monomers and (+)N,N-diallyltartradiamide (DAT) as crosslinker. The hydrogels NAT ITAwere prepared using different molar fraction of monomers and characterized by FTIR-ATR, rheology,swelling properties and mechanical force. The hydrogel prepared with 80% and 20% of NAT and ITA,respectively, has the lowest equilibrium swelling ratio (ESR = 16) in water but the highest elastic modulus(10 ± 1 kPa) and strength (2.2 ± 0.1 N by h). The gel strength increased 0.5 N in a half hour, while the volumeincreased 4 times when passed from an acid medium to a basic medium. This hydrogel was chosen toprepare a pH-sensitive valve to control the flux in a capillary tube. The valve was tested using a systemto control the formation of Fe3+EDTA complex. The response time was 3 and 15 min to open and closethe valve, respectively. The flow of the solution through the valve was 11 L by min. The pressure ofthe solution during the closing of the valve was 10 kPa. The continuous opening and closing of the valveinvolves repetitive expansion and collapse of the network that could damage the structure of the network.However, the valve produced a reproducible and stable response. The dynamic hydrogen bonding existingin the polymeric chains of NAT ITA products could assist in the reversible process when the hydrogelswere subjected to repetitive work. The mechanical properties of the gels and self-healing capacity of thenetworks indicated that the products could be applicable in the development of systems for controlleddrug release. Fil: Romero, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina Fil: Arrua, Ruben Dario. University Of Tasmania. Faculty Of Science, Engineering & Technology. Departament Of Science; Australia Fil: Alvarez Igarzabal, Cecilia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina Fil: Emily Hilder, Emily. University Of Tasmania; Australia |
description |
New hydrogels as materials with potential application in the area of actuators have been developed.Hydrogel synthesis was performed using tris[(hydroxymethyl) methyl]acrylamide (NAT) and itaconicacid (ITA) as monomers and (+)N,N-diallyltartradiamide (DAT) as crosslinker. The hydrogels NAT ITAwere prepared using different molar fraction of monomers and characterized by FTIR-ATR, rheology,swelling properties and mechanical force. The hydrogel prepared with 80% and 20% of NAT and ITA,respectively, has the lowest equilibrium swelling ratio (ESR = 16) in water but the highest elastic modulus(10 ± 1 kPa) and strength (2.2 ± 0.1 N by h). The gel strength increased 0.5 N in a half hour, while the volumeincreased 4 times when passed from an acid medium to a basic medium. This hydrogel was chosen toprepare a pH-sensitive valve to control the flux in a capillary tube. The valve was tested using a systemto control the formation of Fe3+EDTA complex. The response time was 3 and 15 min to open and closethe valve, respectively. The flow of the solution through the valve was 11 L by min. The pressure ofthe solution during the closing of the valve was 10 kPa. The continuous opening and closing of the valveinvolves repetitive expansion and collapse of the network that could damage the structure of the network.However, the valve produced a reproducible and stable response. The dynamic hydrogen bonding existingin the polymeric chains of NAT ITA products could assist in the reversible process when the hydrogelswere subjected to repetitive work. The mechanical properties of the gels and self-healing capacity of thenetworks indicated that the products could be applicable in the development of systems for controlleddrug release. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/10515 Romero, Marcelo Ricardo; Arrua, Ruben Dario; Alvarez Igarzabal, Cecilia Ines; Emily Hilder, Emily; Valve based on novel hydrogels: From synthesis to application; Elsevier Science Sa; Sensors And Actuators B: Chemical; 188; 11-2013; 176-184 0925-4005 |
url |
http://hdl.handle.net/11336/10515 |
identifier_str_mv |
Romero, Marcelo Ricardo; Arrua, Ruben Dario; Alvarez Igarzabal, Cecilia Ines; Emily Hilder, Emily; Valve based on novel hydrogels: From synthesis to application; Elsevier Science Sa; Sensors And Actuators B: Chemical; 188; 11-2013; 176-184 0925-4005 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2013.06.086 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925400513007776 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614502642876416 |
score |
13.070432 |