Liquid transfer from single cavities to rotating rolls

Autores
Campana, Diego Martin; Carvalho, Marcio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study computationally the dynamics of a liquid bridge formed between a 2D trapezoidal cavity, which represents an axisymmetric cell or a plane groove engraved in a roll, and a moving plate. The flow is a model of the liquid transfer process in gravure printing systems. The considered plate kinematics represents the actual motion of a roll-to-roll system, which includes extension, shear and rotation relative to the cavity. The fluid flow is modeled by solving the Stokes equations, discretized with the finite element method; the evolving free surfaces are accomodated by employing a pseudo-solid mesh deforming algorithm. The results show that as the roll radius is reduced, thus increasing lateral and rotational motions of the top plate relative to the cavity, a larger volume of liquid is transferred to the plate. However, due to lateral displacement of the contact lines, special care must be taken concerning the wettability properties of the substrate to avoid errors in the pattern fidelity. The predictions also show a strong non-linear behavior of the liquid fraction extracted from a cavity as a function of the capillary number. At high capillary numbers the fluid dynamics is mainly controlled by the extensional motion due to the strong contact line pinning. On the other hand, at low values of capillary number, the contact lines have higher mobility and the liquid fraction primarily depends on lateral and rotational plate velocity. These mechanisms tend to drag the fluid outside the cavity and increase the liquid fraction transferred to the plate, as been observed in experiments.
Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Carvalho, Marcio. Pontificia Universidad Catolica Do Rio de Janeiro; Brasil
Materia
Contact Lines
Liquid Bridges
Gravure Printing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/9334

id CONICETDig_b50d27afdfe4843af35578571798ef51
oai_identifier_str oai:ri.conicet.gov.ar:11336/9334
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Liquid transfer from single cavities to rotating rollsCampana, Diego MartinCarvalho, MarcioContact LinesLiquid BridgesGravure Printinghttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2In this work we study computationally the dynamics of a liquid bridge formed between a 2D trapezoidal cavity, which represents an axisymmetric cell or a plane groove engraved in a roll, and a moving plate. The flow is a model of the liquid transfer process in gravure printing systems. The considered plate kinematics represents the actual motion of a roll-to-roll system, which includes extension, shear and rotation relative to the cavity. The fluid flow is modeled by solving the Stokes equations, discretized with the finite element method; the evolving free surfaces are accomodated by employing a pseudo-solid mesh deforming algorithm. The results show that as the roll radius is reduced, thus increasing lateral and rotational motions of the top plate relative to the cavity, a larger volume of liquid is transferred to the plate. However, due to lateral displacement of the contact lines, special care must be taken concerning the wettability properties of the substrate to avoid errors in the pattern fidelity. The predictions also show a strong non-linear behavior of the liquid fraction extracted from a cavity as a function of the capillary number. At high capillary numbers the fluid dynamics is mainly controlled by the extensional motion due to the strong contact line pinning. On the other hand, at low values of capillary number, the contact lines have higher mobility and the liquid fraction primarily depends on lateral and rotational plate velocity. These mechanisms tend to drag the fluid outside the cavity and increase the liquid fraction transferred to the plate, as been observed in experiments.Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Carvalho, Marcio. Pontificia Universidad Catolica Do Rio de Janeiro; BrasilCambridge University Press2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9334Campana, Diego Martin; Carvalho, Marcio; Liquid transfer from single cavities to rotating rolls; Cambridge University Press; Journal Of Fluid Mechanics; 747; 5-2014; 545-5710022-1120enginfo:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2014.175info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:06Zoai:ri.conicet.gov.ar:11336/9334instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:07.082CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Liquid transfer from single cavities to rotating rolls
title Liquid transfer from single cavities to rotating rolls
spellingShingle Liquid transfer from single cavities to rotating rolls
Campana, Diego Martin
Contact Lines
Liquid Bridges
Gravure Printing
title_short Liquid transfer from single cavities to rotating rolls
title_full Liquid transfer from single cavities to rotating rolls
title_fullStr Liquid transfer from single cavities to rotating rolls
title_full_unstemmed Liquid transfer from single cavities to rotating rolls
title_sort Liquid transfer from single cavities to rotating rolls
dc.creator.none.fl_str_mv Campana, Diego Martin
Carvalho, Marcio
author Campana, Diego Martin
author_facet Campana, Diego Martin
Carvalho, Marcio
author_role author
author2 Carvalho, Marcio
author2_role author
dc.subject.none.fl_str_mv Contact Lines
Liquid Bridges
Gravure Printing
topic Contact Lines
Liquid Bridges
Gravure Printing
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work we study computationally the dynamics of a liquid bridge formed between a 2D trapezoidal cavity, which represents an axisymmetric cell or a plane groove engraved in a roll, and a moving plate. The flow is a model of the liquid transfer process in gravure printing systems. The considered plate kinematics represents the actual motion of a roll-to-roll system, which includes extension, shear and rotation relative to the cavity. The fluid flow is modeled by solving the Stokes equations, discretized with the finite element method; the evolving free surfaces are accomodated by employing a pseudo-solid mesh deforming algorithm. The results show that as the roll radius is reduced, thus increasing lateral and rotational motions of the top plate relative to the cavity, a larger volume of liquid is transferred to the plate. However, due to lateral displacement of the contact lines, special care must be taken concerning the wettability properties of the substrate to avoid errors in the pattern fidelity. The predictions also show a strong non-linear behavior of the liquid fraction extracted from a cavity as a function of the capillary number. At high capillary numbers the fluid dynamics is mainly controlled by the extensional motion due to the strong contact line pinning. On the other hand, at low values of capillary number, the contact lines have higher mobility and the liquid fraction primarily depends on lateral and rotational plate velocity. These mechanisms tend to drag the fluid outside the cavity and increase the liquid fraction transferred to the plate, as been observed in experiments.
Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Carvalho, Marcio. Pontificia Universidad Catolica Do Rio de Janeiro; Brasil
description In this work we study computationally the dynamics of a liquid bridge formed between a 2D trapezoidal cavity, which represents an axisymmetric cell or a plane groove engraved in a roll, and a moving plate. The flow is a model of the liquid transfer process in gravure printing systems. The considered plate kinematics represents the actual motion of a roll-to-roll system, which includes extension, shear and rotation relative to the cavity. The fluid flow is modeled by solving the Stokes equations, discretized with the finite element method; the evolving free surfaces are accomodated by employing a pseudo-solid mesh deforming algorithm. The results show that as the roll radius is reduced, thus increasing lateral and rotational motions of the top plate relative to the cavity, a larger volume of liquid is transferred to the plate. However, due to lateral displacement of the contact lines, special care must be taken concerning the wettability properties of the substrate to avoid errors in the pattern fidelity. The predictions also show a strong non-linear behavior of the liquid fraction extracted from a cavity as a function of the capillary number. At high capillary numbers the fluid dynamics is mainly controlled by the extensional motion due to the strong contact line pinning. On the other hand, at low values of capillary number, the contact lines have higher mobility and the liquid fraction primarily depends on lateral and rotational plate velocity. These mechanisms tend to drag the fluid outside the cavity and increase the liquid fraction transferred to the plate, as been observed in experiments.
publishDate 2014
dc.date.none.fl_str_mv 2014-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/9334
Campana, Diego Martin; Carvalho, Marcio; Liquid transfer from single cavities to rotating rolls; Cambridge University Press; Journal Of Fluid Mechanics; 747; 5-2014; 545-571
0022-1120
url http://hdl.handle.net/11336/9334
identifier_str_mv Campana, Diego Martin; Carvalho, Marcio; Liquid transfer from single cavities to rotating rolls; Cambridge University Press; Journal Of Fluid Mechanics; 747; 5-2014; 545-571
0022-1120
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2014.175
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614139828240384
score 13.070432