Liquid transfer from single cavities to rotating rolls
- Autores
- Campana, Diego Martin; Carvalho, Marcio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we study computationally the dynamics of a liquid bridge formed between a 2D trapezoidal cavity, which represents an axisymmetric cell or a plane groove engraved in a roll, and a moving plate. The flow is a model of the liquid transfer process in gravure printing systems. The considered plate kinematics represents the actual motion of a roll-to-roll system, which includes extension, shear and rotation relative to the cavity. The fluid flow is modeled by solving the Stokes equations, discretized with the finite element method; the evolving free surfaces are accomodated by employing a pseudo-solid mesh deforming algorithm. The results show that as the roll radius is reduced, thus increasing lateral and rotational motions of the top plate relative to the cavity, a larger volume of liquid is transferred to the plate. However, due to lateral displacement of the contact lines, special care must be taken concerning the wettability properties of the substrate to avoid errors in the pattern fidelity. The predictions also show a strong non-linear behavior of the liquid fraction extracted from a cavity as a function of the capillary number. At high capillary numbers the fluid dynamics is mainly controlled by the extensional motion due to the strong contact line pinning. On the other hand, at low values of capillary number, the contact lines have higher mobility and the liquid fraction primarily depends on lateral and rotational plate velocity. These mechanisms tend to drag the fluid outside the cavity and increase the liquid fraction transferred to the plate, as been observed in experiments.
Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Carvalho, Marcio. Pontificia Universidad Catolica Do Rio de Janeiro; Brasil - Materia
-
Contact Lines
Liquid Bridges
Gravure Printing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9334
Ver los metadatos del registro completo
id |
CONICETDig_b50d27afdfe4843af35578571798ef51 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9334 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Liquid transfer from single cavities to rotating rollsCampana, Diego MartinCarvalho, MarcioContact LinesLiquid BridgesGravure Printinghttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2In this work we study computationally the dynamics of a liquid bridge formed between a 2D trapezoidal cavity, which represents an axisymmetric cell or a plane groove engraved in a roll, and a moving plate. The flow is a model of the liquid transfer process in gravure printing systems. The considered plate kinematics represents the actual motion of a roll-to-roll system, which includes extension, shear and rotation relative to the cavity. The fluid flow is modeled by solving the Stokes equations, discretized with the finite element method; the evolving free surfaces are accomodated by employing a pseudo-solid mesh deforming algorithm. The results show that as the roll radius is reduced, thus increasing lateral and rotational motions of the top plate relative to the cavity, a larger volume of liquid is transferred to the plate. However, due to lateral displacement of the contact lines, special care must be taken concerning the wettability properties of the substrate to avoid errors in the pattern fidelity. The predictions also show a strong non-linear behavior of the liquid fraction extracted from a cavity as a function of the capillary number. At high capillary numbers the fluid dynamics is mainly controlled by the extensional motion due to the strong contact line pinning. On the other hand, at low values of capillary number, the contact lines have higher mobility and the liquid fraction primarily depends on lateral and rotational plate velocity. These mechanisms tend to drag the fluid outside the cavity and increase the liquid fraction transferred to the plate, as been observed in experiments.Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Carvalho, Marcio. Pontificia Universidad Catolica Do Rio de Janeiro; BrasilCambridge University Press2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9334Campana, Diego Martin; Carvalho, Marcio; Liquid transfer from single cavities to rotating rolls; Cambridge University Press; Journal Of Fluid Mechanics; 747; 5-2014; 545-5710022-1120enginfo:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2014.175info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:06Zoai:ri.conicet.gov.ar:11336/9334instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:07.082CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Liquid transfer from single cavities to rotating rolls |
title |
Liquid transfer from single cavities to rotating rolls |
spellingShingle |
Liquid transfer from single cavities to rotating rolls Campana, Diego Martin Contact Lines Liquid Bridges Gravure Printing |
title_short |
Liquid transfer from single cavities to rotating rolls |
title_full |
Liquid transfer from single cavities to rotating rolls |
title_fullStr |
Liquid transfer from single cavities to rotating rolls |
title_full_unstemmed |
Liquid transfer from single cavities to rotating rolls |
title_sort |
Liquid transfer from single cavities to rotating rolls |
dc.creator.none.fl_str_mv |
Campana, Diego Martin Carvalho, Marcio |
author |
Campana, Diego Martin |
author_facet |
Campana, Diego Martin Carvalho, Marcio |
author_role |
author |
author2 |
Carvalho, Marcio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Contact Lines Liquid Bridges Gravure Printing |
topic |
Contact Lines Liquid Bridges Gravure Printing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work we study computationally the dynamics of a liquid bridge formed between a 2D trapezoidal cavity, which represents an axisymmetric cell or a plane groove engraved in a roll, and a moving plate. The flow is a model of the liquid transfer process in gravure printing systems. The considered plate kinematics represents the actual motion of a roll-to-roll system, which includes extension, shear and rotation relative to the cavity. The fluid flow is modeled by solving the Stokes equations, discretized with the finite element method; the evolving free surfaces are accomodated by employing a pseudo-solid mesh deforming algorithm. The results show that as the roll radius is reduced, thus increasing lateral and rotational motions of the top plate relative to the cavity, a larger volume of liquid is transferred to the plate. However, due to lateral displacement of the contact lines, special care must be taken concerning the wettability properties of the substrate to avoid errors in the pattern fidelity. The predictions also show a strong non-linear behavior of the liquid fraction extracted from a cavity as a function of the capillary number. At high capillary numbers the fluid dynamics is mainly controlled by the extensional motion due to the strong contact line pinning. On the other hand, at low values of capillary number, the contact lines have higher mobility and the liquid fraction primarily depends on lateral and rotational plate velocity. These mechanisms tend to drag the fluid outside the cavity and increase the liquid fraction transferred to the plate, as been observed in experiments. Fil: Campana, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Carvalho, Marcio. Pontificia Universidad Catolica Do Rio de Janeiro; Brasil |
description |
In this work we study computationally the dynamics of a liquid bridge formed between a 2D trapezoidal cavity, which represents an axisymmetric cell or a plane groove engraved in a roll, and a moving plate. The flow is a model of the liquid transfer process in gravure printing systems. The considered plate kinematics represents the actual motion of a roll-to-roll system, which includes extension, shear and rotation relative to the cavity. The fluid flow is modeled by solving the Stokes equations, discretized with the finite element method; the evolving free surfaces are accomodated by employing a pseudo-solid mesh deforming algorithm. The results show that as the roll radius is reduced, thus increasing lateral and rotational motions of the top plate relative to the cavity, a larger volume of liquid is transferred to the plate. However, due to lateral displacement of the contact lines, special care must be taken concerning the wettability properties of the substrate to avoid errors in the pattern fidelity. The predictions also show a strong non-linear behavior of the liquid fraction extracted from a cavity as a function of the capillary number. At high capillary numbers the fluid dynamics is mainly controlled by the extensional motion due to the strong contact line pinning. On the other hand, at low values of capillary number, the contact lines have higher mobility and the liquid fraction primarily depends on lateral and rotational plate velocity. These mechanisms tend to drag the fluid outside the cavity and increase the liquid fraction transferred to the plate, as been observed in experiments. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9334 Campana, Diego Martin; Carvalho, Marcio; Liquid transfer from single cavities to rotating rolls; Cambridge University Press; Journal Of Fluid Mechanics; 747; 5-2014; 545-571 0022-1120 |
url |
http://hdl.handle.net/11336/9334 |
identifier_str_mv |
Campana, Diego Martin; Carvalho, Marcio; Liquid transfer from single cavities to rotating rolls; Cambridge University Press; Journal Of Fluid Mechanics; 747; 5-2014; 545-571 0022-1120 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2014.175 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614139828240384 |
score |
13.070432 |