Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs
- Autores
- Maya, Juan Augusto; Rey Vega, Leonardo Javier; Galarza, Cecilia Gabriela
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze a binary hypothesis testing problem built on a wireless sensor network (WSN) for detecting a stationary random process distributed both in space and time with a circularly-symmetric complex Gaussian distribution under the Neyman-Pearson (NP) framework. Using an analog scheme, the sensors transmit different linear combinations of their measurements through a multiple access channel (MAC) to reach the fusion center (FC), whose task is to decide whether the process is present or not. Considering an energy constraint on each node transmission and a limited amount of channel uses, we compute the miss error exponent of the proposed scheme using Large Deviation Theory (LDT) and show that the proposed strategy is asymptotically optimal (when the number of sensors approaches infinity) among linear orthogonal schemes. We also show that the proposed scheme obtains meaningful energy saving in the low signal-to-noise ratio regime, which is the typical scenario of WSNs. Finally, a Monte Carlo simulation of a 2-dimensional process in space validates the analytical results.
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Galarza, Cecilia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina - Materia
-
DISTRIBUTED DETECTION
MAC
ENERGY
BANDWIDTH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/253936
Ver los metadatos del registro completo
id |
CONICETDig_b507f2ae5cb49558aa6530333a1a4e05 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/253936 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNsMaya, Juan AugustoRey Vega, Leonardo JavierGalarza, Cecilia GabrielaDISTRIBUTED DETECTIONMACENERGYBANDWIDTHhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2We analyze a binary hypothesis testing problem built on a wireless sensor network (WSN) for detecting a stationary random process distributed both in space and time with a circularly-symmetric complex Gaussian distribution under the Neyman-Pearson (NP) framework. Using an analog scheme, the sensors transmit different linear combinations of their measurements through a multiple access channel (MAC) to reach the fusion center (FC), whose task is to decide whether the process is present or not. Considering an energy constraint on each node transmission and a limited amount of channel uses, we compute the miss error exponent of the proposed scheme using Large Deviation Theory (LDT) and show that the proposed strategy is asymptotically optimal (when the number of sensors approaches infinity) among linear orthogonal schemes. We also show that the proposed scheme obtains meaningful energy saving in the low signal-to-noise ratio regime, which is the typical scenario of WSNs. Finally, a Monte Carlo simulation of a 2-dimensional process in space validates the analytical results.Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaFil: Galarza, Cecilia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaInstitute of Electrical and Electronics Engineers2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/253936Maya, Juan Augusto; Rey Vega, Leonardo Javier; Galarza, Cecilia Gabriela; Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 8; 4-2015; 2057-20691053-587XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7050369info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2407323info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:13Zoai:ri.conicet.gov.ar:11336/253936instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:13.565CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs |
title |
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs |
spellingShingle |
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs Maya, Juan Augusto DISTRIBUTED DETECTION MAC ENERGY BANDWIDTH |
title_short |
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs |
title_full |
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs |
title_fullStr |
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs |
title_full_unstemmed |
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs |
title_sort |
Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs |
dc.creator.none.fl_str_mv |
Maya, Juan Augusto Rey Vega, Leonardo Javier Galarza, Cecilia Gabriela |
author |
Maya, Juan Augusto |
author_facet |
Maya, Juan Augusto Rey Vega, Leonardo Javier Galarza, Cecilia Gabriela |
author_role |
author |
author2 |
Rey Vega, Leonardo Javier Galarza, Cecilia Gabriela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DISTRIBUTED DETECTION MAC ENERGY BANDWIDTH |
topic |
DISTRIBUTED DETECTION MAC ENERGY BANDWIDTH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We analyze a binary hypothesis testing problem built on a wireless sensor network (WSN) for detecting a stationary random process distributed both in space and time with a circularly-symmetric complex Gaussian distribution under the Neyman-Pearson (NP) framework. Using an analog scheme, the sensors transmit different linear combinations of their measurements through a multiple access channel (MAC) to reach the fusion center (FC), whose task is to decide whether the process is present or not. Considering an energy constraint on each node transmission and a limited amount of channel uses, we compute the miss error exponent of the proposed scheme using Large Deviation Theory (LDT) and show that the proposed strategy is asymptotically optimal (when the number of sensors approaches infinity) among linear orthogonal schemes. We also show that the proposed scheme obtains meaningful energy saving in the low signal-to-noise ratio regime, which is the typical scenario of WSNs. Finally, a Monte Carlo simulation of a 2-dimensional process in space validates the analytical results. Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina Fil: Galarza, Cecilia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina |
description |
We analyze a binary hypothesis testing problem built on a wireless sensor network (WSN) for detecting a stationary random process distributed both in space and time with a circularly-symmetric complex Gaussian distribution under the Neyman-Pearson (NP) framework. Using an analog scheme, the sensors transmit different linear combinations of their measurements through a multiple access channel (MAC) to reach the fusion center (FC), whose task is to decide whether the process is present or not. Considering an energy constraint on each node transmission and a limited amount of channel uses, we compute the miss error exponent of the proposed scheme using Large Deviation Theory (LDT) and show that the proposed strategy is asymptotically optimal (when the number of sensors approaches infinity) among linear orthogonal schemes. We also show that the proposed scheme obtains meaningful energy saving in the low signal-to-noise ratio regime, which is the typical scenario of WSNs. Finally, a Monte Carlo simulation of a 2-dimensional process in space validates the analytical results. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/253936 Maya, Juan Augusto; Rey Vega, Leonardo Javier; Galarza, Cecilia Gabriela; Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 8; 4-2015; 2057-2069 1053-587X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/253936 |
identifier_str_mv |
Maya, Juan Augusto; Rey Vega, Leonardo Javier; Galarza, Cecilia Gabriela; Optimal Resource Allocation for Detection of a Gaussian Process Using a MAC in WSNs; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 8; 4-2015; 2057-2069 1053-587X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7050369 info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2407323 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613303057252352 |
score |
13.070432 |