Using a quantum work meter to test non-equilibrium fluctuation theorems
- Autores
- Cerisola, Federico; Margalit, Yair; MacHluf, Shimon; Roncaglia, Augusto Jose; Paz, Juan Pablo; Folman, Ron
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Work is an essential concept in classical thermodynamics, and in the quantum regime, where the notion of a trajectory is not available, its definition is not trivial. For driven (but otherwise isolated) quantum systems, work can be defined as a random variable, associated with the change in the internal energy. The probability for the different values of work captures essential information describing the behaviour of the system, both in and out of thermal equilibrium. In fact, the work probability distribution is at the core of "fluctuation theorems" in quantum thermodynamics. Here we present the design and implementation of a quantum work meter operating on an ensemble of cold atoms, which are controlled by an atom chip. Our device not only directly measures work but also directly samples its probability distribution. We demonstrate the operation of this new tool and use it to verify the validity of the quantum Jarzynksi identity.
Fil: Cerisola, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Margalit, Yair. Ben-Gurion University of the Negev ; Israel
Fil: MacHluf, Shimon. University of Amsterdam; Países Bajos
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Folman, Ron. Ben-Gurion University of the Negev ; Israel - Materia
-
Quantum Thermodynamics
Quantum Work
Fluctuation theorems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43631
Ver los metadatos del registro completo
id |
CONICETDig_639551917027769985418d0e80d6f53a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43631 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Using a quantum work meter to test non-equilibrium fluctuation theoremsCerisola, FedericoMargalit, YairMacHluf, ShimonRoncaglia, Augusto JosePaz, Juan PabloFolman, RonQuantum ThermodynamicsQuantum WorkFluctuation theoremshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Work is an essential concept in classical thermodynamics, and in the quantum regime, where the notion of a trajectory is not available, its definition is not trivial. For driven (but otherwise isolated) quantum systems, work can be defined as a random variable, associated with the change in the internal energy. The probability for the different values of work captures essential information describing the behaviour of the system, both in and out of thermal equilibrium. In fact, the work probability distribution is at the core of "fluctuation theorems" in quantum thermodynamics. Here we present the design and implementation of a quantum work meter operating on an ensemble of cold atoms, which are controlled by an atom chip. Our device not only directly measures work but also directly samples its probability distribution. We demonstrate the operation of this new tool and use it to verify the validity of the quantum Jarzynksi identity.Fil: Cerisola, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Margalit, Yair. Ben-Gurion University of the Negev ; IsraelFil: MacHluf, Shimon. University of Amsterdam; Países BajosFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Folman, Ron. Ben-Gurion University of the Negev ; IsraelNature2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43631Cerisola, Federico; Margalit, Yair; MacHluf, Shimon; Roncaglia, Augusto Jose; Paz, Juan Pablo; et al.; Using a quantum work meter to test non-equilibrium fluctuation theorems; Nature; Nature Communications; 8; 1241; 12-2017; 1-62041-17232041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-017-01308-7info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1706.07866info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-017-01308-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:30Zoai:ri.conicet.gov.ar:11336/43631instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:30.38CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Using a quantum work meter to test non-equilibrium fluctuation theorems |
title |
Using a quantum work meter to test non-equilibrium fluctuation theorems |
spellingShingle |
Using a quantum work meter to test non-equilibrium fluctuation theorems Cerisola, Federico Quantum Thermodynamics Quantum Work Fluctuation theorems |
title_short |
Using a quantum work meter to test non-equilibrium fluctuation theorems |
title_full |
Using a quantum work meter to test non-equilibrium fluctuation theorems |
title_fullStr |
Using a quantum work meter to test non-equilibrium fluctuation theorems |
title_full_unstemmed |
Using a quantum work meter to test non-equilibrium fluctuation theorems |
title_sort |
Using a quantum work meter to test non-equilibrium fluctuation theorems |
dc.creator.none.fl_str_mv |
Cerisola, Federico Margalit, Yair MacHluf, Shimon Roncaglia, Augusto Jose Paz, Juan Pablo Folman, Ron |
author |
Cerisola, Federico |
author_facet |
Cerisola, Federico Margalit, Yair MacHluf, Shimon Roncaglia, Augusto Jose Paz, Juan Pablo Folman, Ron |
author_role |
author |
author2 |
Margalit, Yair MacHluf, Shimon Roncaglia, Augusto Jose Paz, Juan Pablo Folman, Ron |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Quantum Thermodynamics Quantum Work Fluctuation theorems |
topic |
Quantum Thermodynamics Quantum Work Fluctuation theorems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Work is an essential concept in classical thermodynamics, and in the quantum regime, where the notion of a trajectory is not available, its definition is not trivial. For driven (but otherwise isolated) quantum systems, work can be defined as a random variable, associated with the change in the internal energy. The probability for the different values of work captures essential information describing the behaviour of the system, both in and out of thermal equilibrium. In fact, the work probability distribution is at the core of "fluctuation theorems" in quantum thermodynamics. Here we present the design and implementation of a quantum work meter operating on an ensemble of cold atoms, which are controlled by an atom chip. Our device not only directly measures work but also directly samples its probability distribution. We demonstrate the operation of this new tool and use it to verify the validity of the quantum Jarzynksi identity. Fil: Cerisola, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Margalit, Yair. Ben-Gurion University of the Negev ; Israel Fil: MacHluf, Shimon. University of Amsterdam; Países Bajos Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Folman, Ron. Ben-Gurion University of the Negev ; Israel |
description |
Work is an essential concept in classical thermodynamics, and in the quantum regime, where the notion of a trajectory is not available, its definition is not trivial. For driven (but otherwise isolated) quantum systems, work can be defined as a random variable, associated with the change in the internal energy. The probability for the different values of work captures essential information describing the behaviour of the system, both in and out of thermal equilibrium. In fact, the work probability distribution is at the core of "fluctuation theorems" in quantum thermodynamics. Here we present the design and implementation of a quantum work meter operating on an ensemble of cold atoms, which are controlled by an atom chip. Our device not only directly measures work but also directly samples its probability distribution. We demonstrate the operation of this new tool and use it to verify the validity of the quantum Jarzynksi identity. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43631 Cerisola, Federico; Margalit, Yair; MacHluf, Shimon; Roncaglia, Augusto Jose; Paz, Juan Pablo; et al.; Using a quantum work meter to test non-equilibrium fluctuation theorems; Nature; Nature Communications; 8; 1241; 12-2017; 1-6 2041-1723 2041-1723 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43631 |
identifier_str_mv |
Cerisola, Federico; Margalit, Yair; MacHluf, Shimon; Roncaglia, Augusto Jose; Paz, Juan Pablo; et al.; Using a quantum work meter to test non-equilibrium fluctuation theorems; Nature; Nature Communications; 8; 1241; 12-2017; 1-6 2041-1723 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-017-01308-7 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1706.07866 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-017-01308-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270121964339200 |
score |
13.13397 |