Renormalization group study of marginal ferromagnetism
- Autores
- Cavagna, Andrea; Culla, Antonio; Grigera, Tomas Sebastian
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- When studying the collective motion of biological groups, a useful theoretical framework is that of ferromagnetic systems, in which the alignment interactions are a surrogate of the effective imitation among the individuals. In this context, the experimental discovery of scale-free correlations of speed fluctuations in starling flocks poses a challenge to common statistical physics wisdom, as in the ordered phase of standard ferromagnetic models with O(n) symmetry, the modulus of the order parameter has finite correlation length. To make sense of this anomaly, a ferromagnetic theory has been proposed, where the bare confining potential has zero second derivative (i.e., it is marginal) along the modulus of the order parameter. The marginal model exhibits a zero-temperature critical point, where the modulus correlation length diverges, hence allowing us to boost both correlation and collective order by simply reducing the temperature. Here, we derive an effective field theory describing the marginal model close to the T=0 critical point and calculate the renormalization group equations at one loop within a momentum shell approach. We discover a nontrivial scenario, as the cubic and quartic vertices do not vanish in the infrared limit, while the coupling constants effectively regulating the exponents ν and η have upper critical dimension dc=2, so in three dimensions the critical exponents acquire their free values, ν=1/2 and η=0. This theoretical scenario is verified by a Monte Carlo study of the modulus susceptibility in three dimensions, where the standard finite-size scaling relations have to be adapted to the case of d>dc. The numerical data fully confirm our theoretical results.
Fil: Cavagna, Andrea. Consiglio Nazionale delle Ricerche; Italia. Università degli studi di Roma "La Sapienza"; Italia. Istituto Nazionale di Fisica Nucleare; Italia
Fil: Culla, Antonio. Consiglio Nazionale delle Ricerche; Italia
Fil: Grigera, Tomas Sebastian. Consiglio Nazionale delle Ricerche; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
flocking
speed control
renormalization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212672
Ver los metadatos del registro completo
id |
CONICETDig_b45c92f41161b809ef44b1cbaa8b086d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212672 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Renormalization group study of marginal ferromagnetismCavagna, AndreaCulla, AntonioGrigera, Tomas Sebastianflockingspeed controlrenormalizationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1When studying the collective motion of biological groups, a useful theoretical framework is that of ferromagnetic systems, in which the alignment interactions are a surrogate of the effective imitation among the individuals. In this context, the experimental discovery of scale-free correlations of speed fluctuations in starling flocks poses a challenge to common statistical physics wisdom, as in the ordered phase of standard ferromagnetic models with O(n) symmetry, the modulus of the order parameter has finite correlation length. To make sense of this anomaly, a ferromagnetic theory has been proposed, where the bare confining potential has zero second derivative (i.e., it is marginal) along the modulus of the order parameter. The marginal model exhibits a zero-temperature critical point, where the modulus correlation length diverges, hence allowing us to boost both correlation and collective order by simply reducing the temperature. Here, we derive an effective field theory describing the marginal model close to the T=0 critical point and calculate the renormalization group equations at one loop within a momentum shell approach. We discover a nontrivial scenario, as the cubic and quartic vertices do not vanish in the infrared limit, while the coupling constants effectively regulating the exponents ν and η have upper critical dimension dc=2, so in three dimensions the critical exponents acquire their free values, ν=1/2 and η=0. This theoretical scenario is verified by a Monte Carlo study of the modulus susceptibility in three dimensions, where the standard finite-size scaling relations have to be adapted to the case of d>dc. The numerical data fully confirm our theoretical results.Fil: Cavagna, Andrea. Consiglio Nazionale delle Ricerche; Italia. Università degli studi di Roma "La Sapienza"; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Culla, Antonio. Consiglio Nazionale delle Ricerche; ItaliaFil: Grigera, Tomas Sebastian. Consiglio Nazionale delle Ricerche; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaAmerican Physical Society2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212672Cavagna, Andrea; Culla, Antonio; Grigera, Tomas Sebastian; Renormalization group study of marginal ferromagnetism; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 106; 5; 11-2022; 54136-541362470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.106.054136info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.054136info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:39Zoai:ri.conicet.gov.ar:11336/212672instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:39.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Renormalization group study of marginal ferromagnetism |
title |
Renormalization group study of marginal ferromagnetism |
spellingShingle |
Renormalization group study of marginal ferromagnetism Cavagna, Andrea flocking speed control renormalization |
title_short |
Renormalization group study of marginal ferromagnetism |
title_full |
Renormalization group study of marginal ferromagnetism |
title_fullStr |
Renormalization group study of marginal ferromagnetism |
title_full_unstemmed |
Renormalization group study of marginal ferromagnetism |
title_sort |
Renormalization group study of marginal ferromagnetism |
dc.creator.none.fl_str_mv |
Cavagna, Andrea Culla, Antonio Grigera, Tomas Sebastian |
author |
Cavagna, Andrea |
author_facet |
Cavagna, Andrea Culla, Antonio Grigera, Tomas Sebastian |
author_role |
author |
author2 |
Culla, Antonio Grigera, Tomas Sebastian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
flocking speed control renormalization |
topic |
flocking speed control renormalization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
When studying the collective motion of biological groups, a useful theoretical framework is that of ferromagnetic systems, in which the alignment interactions are a surrogate of the effective imitation among the individuals. In this context, the experimental discovery of scale-free correlations of speed fluctuations in starling flocks poses a challenge to common statistical physics wisdom, as in the ordered phase of standard ferromagnetic models with O(n) symmetry, the modulus of the order parameter has finite correlation length. To make sense of this anomaly, a ferromagnetic theory has been proposed, where the bare confining potential has zero second derivative (i.e., it is marginal) along the modulus of the order parameter. The marginal model exhibits a zero-temperature critical point, where the modulus correlation length diverges, hence allowing us to boost both correlation and collective order by simply reducing the temperature. Here, we derive an effective field theory describing the marginal model close to the T=0 critical point and calculate the renormalization group equations at one loop within a momentum shell approach. We discover a nontrivial scenario, as the cubic and quartic vertices do not vanish in the infrared limit, while the coupling constants effectively regulating the exponents ν and η have upper critical dimension dc=2, so in three dimensions the critical exponents acquire their free values, ν=1/2 and η=0. This theoretical scenario is verified by a Monte Carlo study of the modulus susceptibility in three dimensions, where the standard finite-size scaling relations have to be adapted to the case of d>dc. The numerical data fully confirm our theoretical results. Fil: Cavagna, Andrea. Consiglio Nazionale delle Ricerche; Italia. Università degli studi di Roma "La Sapienza"; Italia. Istituto Nazionale di Fisica Nucleare; Italia Fil: Culla, Antonio. Consiglio Nazionale delle Ricerche; Italia Fil: Grigera, Tomas Sebastian. Consiglio Nazionale delle Ricerche; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
When studying the collective motion of biological groups, a useful theoretical framework is that of ferromagnetic systems, in which the alignment interactions are a surrogate of the effective imitation among the individuals. In this context, the experimental discovery of scale-free correlations of speed fluctuations in starling flocks poses a challenge to common statistical physics wisdom, as in the ordered phase of standard ferromagnetic models with O(n) symmetry, the modulus of the order parameter has finite correlation length. To make sense of this anomaly, a ferromagnetic theory has been proposed, where the bare confining potential has zero second derivative (i.e., it is marginal) along the modulus of the order parameter. The marginal model exhibits a zero-temperature critical point, where the modulus correlation length diverges, hence allowing us to boost both correlation and collective order by simply reducing the temperature. Here, we derive an effective field theory describing the marginal model close to the T=0 critical point and calculate the renormalization group equations at one loop within a momentum shell approach. We discover a nontrivial scenario, as the cubic and quartic vertices do not vanish in the infrared limit, while the coupling constants effectively regulating the exponents ν and η have upper critical dimension dc=2, so in three dimensions the critical exponents acquire their free values, ν=1/2 and η=0. This theoretical scenario is verified by a Monte Carlo study of the modulus susceptibility in three dimensions, where the standard finite-size scaling relations have to be adapted to the case of d>dc. The numerical data fully confirm our theoretical results. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212672 Cavagna, Andrea; Culla, Antonio; Grigera, Tomas Sebastian; Renormalization group study of marginal ferromagnetism; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 106; 5; 11-2022; 54136-54136 2470-0045 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212672 |
identifier_str_mv |
Cavagna, Andrea; Culla, Antonio; Grigera, Tomas Sebastian; Renormalization group study of marginal ferromagnetism; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 106; 5; 11-2022; 54136-54136 2470-0045 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.106.054136 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.054136 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613560650432512 |
score |
13.070432 |