Nonlinear FEM strategies for modeling pipe-soil interaction

Autores
Kunert, Hernan Guillermo; Otegui, Luis Jose; Marquez, Anibal Angel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper discusses the results of one finite element modeling strategy to assess the behavior of pipelines buried in rainy forest regions, which are prone to failures by axial stresses from land movement. Two failures had already been investigated; conclusions of Root Cause Analyses agree with numerical predictions. The model allows quantifying soil displacements that load the system, a parameter that could not be estimated by geotechnical specialists. The model also confirmed other facts suggested by different failure analysis with no trivial theoretical demonstration, such as the notable effect of pipe diameter. The model is based on a three-dimensional simulation of the zone under analysis, which can be up to 1 km long. The finite element method is used for the resolution of partial derivative differential equations and incorporates complex nonlinear physical-mathematical models. A typical geometry considers a 20. m wide and up to 20. m deep right of way, supported in the solid rock layer. Two sufficiently documented events were used to verify if the tool really reproduces the stress state in the pipe due to soil movements. The model is properly adjusted using field instrument data and test results from the region under study, which include geotechnical measurements and pipe strains via vibrating wire strain gauges. The tool is meant to assist the Line Operators on the Integrity Management Policy.
Fil: Kunert, Hernan Guillermo. Universidad Nacional de Mar del Plata; Argentina. GIE; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Otegui, Luis Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Marquez, Anibal Angel. Universidad Nacional de Mar del Plata; Argentina
Materia
Finite Element Analysis
Integrity Management
Pipeline Failures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54309

id CONICETDig_b43e1ae4f641fa761f25ee3cc22aa2c9
oai_identifier_str oai:ri.conicet.gov.ar:11336/54309
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonlinear FEM strategies for modeling pipe-soil interactionKunert, Hernan GuillermoOtegui, Luis JoseMarquez, Anibal AngelFinite Element AnalysisIntegrity ManagementPipeline Failureshttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2This paper discusses the results of one finite element modeling strategy to assess the behavior of pipelines buried in rainy forest regions, which are prone to failures by axial stresses from land movement. Two failures had already been investigated; conclusions of Root Cause Analyses agree with numerical predictions. The model allows quantifying soil displacements that load the system, a parameter that could not be estimated by geotechnical specialists. The model also confirmed other facts suggested by different failure analysis with no trivial theoretical demonstration, such as the notable effect of pipe diameter. The model is based on a three-dimensional simulation of the zone under analysis, which can be up to 1 km long. The finite element method is used for the resolution of partial derivative differential equations and incorporates complex nonlinear physical-mathematical models. A typical geometry considers a 20. m wide and up to 20. m deep right of way, supported in the solid rock layer. Two sufficiently documented events were used to verify if the tool really reproduces the stress state in the pipe due to soil movements. The model is properly adjusted using field instrument data and test results from the region under study, which include geotechnical measurements and pipe strains via vibrating wire strain gauges. The tool is meant to assist the Line Operators on the Integrity Management Policy.Fil: Kunert, Hernan Guillermo. Universidad Nacional de Mar del Plata; Argentina. GIE; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Otegui, Luis Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Marquez, Anibal Angel. Universidad Nacional de Mar del Plata; ArgentinaPergamon-Elsevier Science Ltd2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/pdfhttp://hdl.handle.net/11336/54309Kunert, Hernan Guillermo; Otegui, Luis Jose; Marquez, Anibal Angel; Nonlinear FEM strategies for modeling pipe-soil interaction; Pergamon-Elsevier Science Ltd; Engineering Failure Analysis; 24; 9-2012; 46-561350-6307CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.engfailanal.2012.03.008info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1350630712000519info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:57Zoai:ri.conicet.gov.ar:11336/54309instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:58.114CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonlinear FEM strategies for modeling pipe-soil interaction
title Nonlinear FEM strategies for modeling pipe-soil interaction
spellingShingle Nonlinear FEM strategies for modeling pipe-soil interaction
Kunert, Hernan Guillermo
Finite Element Analysis
Integrity Management
Pipeline Failures
title_short Nonlinear FEM strategies for modeling pipe-soil interaction
title_full Nonlinear FEM strategies for modeling pipe-soil interaction
title_fullStr Nonlinear FEM strategies for modeling pipe-soil interaction
title_full_unstemmed Nonlinear FEM strategies for modeling pipe-soil interaction
title_sort Nonlinear FEM strategies for modeling pipe-soil interaction
dc.creator.none.fl_str_mv Kunert, Hernan Guillermo
Otegui, Luis Jose
Marquez, Anibal Angel
author Kunert, Hernan Guillermo
author_facet Kunert, Hernan Guillermo
Otegui, Luis Jose
Marquez, Anibal Angel
author_role author
author2 Otegui, Luis Jose
Marquez, Anibal Angel
author2_role author
author
dc.subject.none.fl_str_mv Finite Element Analysis
Integrity Management
Pipeline Failures
topic Finite Element Analysis
Integrity Management
Pipeline Failures
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper discusses the results of one finite element modeling strategy to assess the behavior of pipelines buried in rainy forest regions, which are prone to failures by axial stresses from land movement. Two failures had already been investigated; conclusions of Root Cause Analyses agree with numerical predictions. The model allows quantifying soil displacements that load the system, a parameter that could not be estimated by geotechnical specialists. The model also confirmed other facts suggested by different failure analysis with no trivial theoretical demonstration, such as the notable effect of pipe diameter. The model is based on a three-dimensional simulation of the zone under analysis, which can be up to 1 km long. The finite element method is used for the resolution of partial derivative differential equations and incorporates complex nonlinear physical-mathematical models. A typical geometry considers a 20. m wide and up to 20. m deep right of way, supported in the solid rock layer. Two sufficiently documented events were used to verify if the tool really reproduces the stress state in the pipe due to soil movements. The model is properly adjusted using field instrument data and test results from the region under study, which include geotechnical measurements and pipe strains via vibrating wire strain gauges. The tool is meant to assist the Line Operators on the Integrity Management Policy.
Fil: Kunert, Hernan Guillermo. Universidad Nacional de Mar del Plata; Argentina. GIE; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Otegui, Luis Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Marquez, Anibal Angel. Universidad Nacional de Mar del Plata; Argentina
description This paper discusses the results of one finite element modeling strategy to assess the behavior of pipelines buried in rainy forest regions, which are prone to failures by axial stresses from land movement. Two failures had already been investigated; conclusions of Root Cause Analyses agree with numerical predictions. The model allows quantifying soil displacements that load the system, a parameter that could not be estimated by geotechnical specialists. The model also confirmed other facts suggested by different failure analysis with no trivial theoretical demonstration, such as the notable effect of pipe diameter. The model is based on a three-dimensional simulation of the zone under analysis, which can be up to 1 km long. The finite element method is used for the resolution of partial derivative differential equations and incorporates complex nonlinear physical-mathematical models. A typical geometry considers a 20. m wide and up to 20. m deep right of way, supported in the solid rock layer. Two sufficiently documented events were used to verify if the tool really reproduces the stress state in the pipe due to soil movements. The model is properly adjusted using field instrument data and test results from the region under study, which include geotechnical measurements and pipe strains via vibrating wire strain gauges. The tool is meant to assist the Line Operators on the Integrity Management Policy.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54309
Kunert, Hernan Guillermo; Otegui, Luis Jose; Marquez, Anibal Angel; Nonlinear FEM strategies for modeling pipe-soil interaction; Pergamon-Elsevier Science Ltd; Engineering Failure Analysis; 24; 9-2012; 46-56
1350-6307
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54309
identifier_str_mv Kunert, Hernan Guillermo; Otegui, Luis Jose; Marquez, Anibal Angel; Nonlinear FEM strategies for modeling pipe-soil interaction; Pergamon-Elsevier Science Ltd; Engineering Failure Analysis; 24; 9-2012; 46-56
1350-6307
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engfailanal.2012.03.008
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1350630712000519
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/vnd.openxmlformats-officedocument.wordprocessingml.document
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269492059570176
score 13.13397