A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis
- Autores
- Grau, Roberto Ricardo; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia Andrea; Gallegos Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Donato, Veronica; Hölscher, Theresa; Boland, Wilhem; Kuipers, Oscar P.; Kovács, Ákos T.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host.
Fil: Grau, Roberto Ricardo. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Oña, Paula. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kunert, Maritta. Instituto Max Planck Institut Fur Chemische Okologie; Alemania
Fil: Leñini, Cecilia Andrea. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gallegos Monterrosa, Ramses. Universitat Jena; Alemania
Fil: Mhatre, Eisha. Universitat Jena; Alemania
Fil: Vileta, Darío. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Donato, Veronica. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hölscher, Theresa. Universitat Jena; Alemania
Fil: Boland, Wilhem. Instituto Max Planck Institut Fur Chemische Okologie; Alemania
Fil: Kuipers, Oscar P.. University of Groningen; Países Bajos
Fil: Kovács, Ákos T.. Universitat Jena; Alemania - Materia
-
Signal Transduction-Cell Differentiation
Phosphorelay-Cell Destiny
Potassium channels
Sliding motility Bacillus subtilis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13438
Ver los metadatos del registro completo
id |
CONICETDig_b4202173b043a177f686a0fc6d2ecbf8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13438 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilisGrau, Roberto Ricardode Oña, PaulaKunert, MarittaLeñini, Cecilia AndreaGallegos Monterrosa, RamsesMhatre, EishaVileta, DaríoDonato, VeronicaHölscher, TheresaBoland, WilhemKuipers, Oscar P.Kovács, Ákos T.Signal Transduction-Cell DifferentiationPhosphorelay-Cell DestinyPotassium channelsSliding motility Bacillus subtilishttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host.Fil: Grau, Roberto Ricardo. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Oña, Paula. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kunert, Maritta. Instituto Max Planck Institut Fur Chemische Okologie; AlemaniaFil: Leñini, Cecilia Andrea. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gallegos Monterrosa, Ramses. Universitat Jena; AlemaniaFil: Mhatre, Eisha. Universitat Jena; AlemaniaFil: Vileta, Darío. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Donato, Veronica. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hölscher, Theresa. Universitat Jena; AlemaniaFil: Boland, Wilhem. Instituto Max Planck Institut Fur Chemische Okologie; AlemaniaFil: Kuipers, Oscar P.. University of Groningen; Países BajosFil: Kovács, Ákos T.. Universitat Jena; AlemaniaAmerican Society for Microbiology2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13438Grau, Roberto Ricardo; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia Andrea; Gallegos Monterrosa, Ramses; et al.; A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis; American Society for Microbiology; mBio; 6; 4; 7-2015; 1-16; e00581-152150-7511enginfo:eu-repo/semantics/altIdentifier/doi/10.1128/mBio.00581-15info:eu-repo/semantics/altIdentifier/url/http://mbio.asm.org/content/6/4/e00581-15info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:38:36Zoai:ri.conicet.gov.ar:11336/13438instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:38:36.589CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis |
title |
A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis |
spellingShingle |
A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis Grau, Roberto Ricardo Signal Transduction-Cell Differentiation Phosphorelay-Cell Destiny Potassium channels Sliding motility Bacillus subtilis |
title_short |
A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis |
title_full |
A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis |
title_fullStr |
A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis |
title_full_unstemmed |
A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis |
title_sort |
A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis |
dc.creator.none.fl_str_mv |
Grau, Roberto Ricardo de Oña, Paula Kunert, Maritta Leñini, Cecilia Andrea Gallegos Monterrosa, Ramses Mhatre, Eisha Vileta, Darío Donato, Veronica Hölscher, Theresa Boland, Wilhem Kuipers, Oscar P. Kovács, Ákos T. |
author |
Grau, Roberto Ricardo |
author_facet |
Grau, Roberto Ricardo de Oña, Paula Kunert, Maritta Leñini, Cecilia Andrea Gallegos Monterrosa, Ramses Mhatre, Eisha Vileta, Darío Donato, Veronica Hölscher, Theresa Boland, Wilhem Kuipers, Oscar P. Kovács, Ákos T. |
author_role |
author |
author2 |
de Oña, Paula Kunert, Maritta Leñini, Cecilia Andrea Gallegos Monterrosa, Ramses Mhatre, Eisha Vileta, Darío Donato, Veronica Hölscher, Theresa Boland, Wilhem Kuipers, Oscar P. Kovács, Ákos T. |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Signal Transduction-Cell Differentiation Phosphorelay-Cell Destiny Potassium channels Sliding motility Bacillus subtilis |
topic |
Signal Transduction-Cell Differentiation Phosphorelay-Cell Destiny Potassium channels Sliding motility Bacillus subtilis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. Fil: Grau, Roberto Ricardo. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Oña, Paula. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kunert, Maritta. Instituto Max Planck Institut Fur Chemische Okologie; Alemania Fil: Leñini, Cecilia Andrea. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gallegos Monterrosa, Ramses. Universitat Jena; Alemania Fil: Mhatre, Eisha. Universitat Jena; Alemania Fil: Vileta, Darío. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Donato, Veronica. Universidad Nacional de Rosario. Facultad de Cs.bioquimicas y Farmaceuticas. Departamento de Microbiologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hölscher, Theresa. Universitat Jena; Alemania Fil: Boland, Wilhem. Instituto Max Planck Institut Fur Chemische Okologie; Alemania Fil: Kuipers, Oscar P.. University of Groningen; Países Bajos Fil: Kovács, Ákos T.. Universitat Jena; Alemania |
description |
Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13438 Grau, Roberto Ricardo; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia Andrea; Gallegos Monterrosa, Ramses; et al.; A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis; American Society for Microbiology; mBio; 6; 4; 7-2015; 1-16; e00581-15 2150-7511 |
url |
http://hdl.handle.net/11336/13438 |
identifier_str_mv |
Grau, Roberto Ricardo; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia Andrea; Gallegos Monterrosa, Ramses; et al.; A duo of Potassium-responsive Histidine Kinases govern the multicellular destiny of Bacillus subtilis; American Society for Microbiology; mBio; 6; 4; 7-2015; 1-16; e00581-15 2150-7511 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1128/mBio.00581-15 info:eu-repo/semantics/altIdentifier/url/http://mbio.asm.org/content/6/4/e00581-15 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Society for Microbiology |
publisher.none.fl_str_mv |
American Society for Microbiology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082865627922432 |
score |
13.22299 |