Multivariable control structure design based on mixed-integer quadratic programming
- Autores
- Braccia, Lautaro; Marchetti, Pablo Andres; Luppi, Patricio Alfredo; Zumoffen, David Alejandro Ramon
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work a new approach to address multivariable control structure (MCS) design for medium/large-scale processes is proposed. The classical MCS design methodologies rely on superstructure representations which define sequential and/or bilevel mixed-integer nonlinear programming (MINLP) problems. The main drawbacks of this kind of approach are the complexity of the required solution methods (stochastic/deterministic global search), the computational time, and the optimality of the solution when simplifications are made. Instead, this work shows that, by using the sum of squared deviations (SSD) as well as the net load evaluation (NLE) concepts, the control structure design problem can be formulated as a mixed-integer quadratic programming (MIQP) model with linear constraints, featuring both optimality and improved computational performance due to state-of-the-art solvers. The formulation is implemented in the GAMS environment using CPLEX as the selected solver and two typical case studies are presented to show the benefits of the proposed approach.
Fil: Braccia, Lautaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Luppi, Patricio Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Rosario; Argentina - Materia
-
PLANTWIDE PROCESS CONTROL
CONTROL STRUCTURE SELECTION
MIXED-INTEGER QUADRATIC PROGRAMMING
BILEVEL OPTIMIZATION PROBLEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50345
Ver los metadatos del registro completo
id |
CONICETDig_b3e6afdfce8192722c0907f909031747 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50345 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multivariable control structure design based on mixed-integer quadratic programmingBraccia, LautaroMarchetti, Pablo AndresLuppi, Patricio AlfredoZumoffen, David Alejandro RamonPLANTWIDE PROCESS CONTROLCONTROL STRUCTURE SELECTIONMIXED-INTEGER QUADRATIC PROGRAMMINGBILEVEL OPTIMIZATION PROBLEMShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work a new approach to address multivariable control structure (MCS) design for medium/large-scale processes is proposed. The classical MCS design methodologies rely on superstructure representations which define sequential and/or bilevel mixed-integer nonlinear programming (MINLP) problems. The main drawbacks of this kind of approach are the complexity of the required solution methods (stochastic/deterministic global search), the computational time, and the optimality of the solution when simplifications are made. Instead, this work shows that, by using the sum of squared deviations (SSD) as well as the net load evaluation (NLE) concepts, the control structure design problem can be formulated as a mixed-integer quadratic programming (MIQP) model with linear constraints, featuring both optimality and improved computational performance due to state-of-the-art solvers. The formulation is implemented in the GAMS environment using CPLEX as the selected solver and two typical case studies are presented to show the benefits of the proposed approach.Fil: Braccia, Lautaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Luppi, Patricio Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Rosario; ArgentinaAmerican Chemical Society2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50345Braccia, Lautaro; Marchetti, Pablo Andres; Luppi, Patricio Alfredo; Zumoffen, David Alejandro Ramon; Multivariable control structure design based on mixed-integer quadratic programming; American Chemical Society; Industrial & Engineering Chemical Research; 56; 39; 9-2017; 11228-112440888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acs.iecr.7b02270info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.7b02270info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:47:31Zoai:ri.conicet.gov.ar:11336/50345instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:47:31.896CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multivariable control structure design based on mixed-integer quadratic programming |
title |
Multivariable control structure design based on mixed-integer quadratic programming |
spellingShingle |
Multivariable control structure design based on mixed-integer quadratic programming Braccia, Lautaro PLANTWIDE PROCESS CONTROL CONTROL STRUCTURE SELECTION MIXED-INTEGER QUADRATIC PROGRAMMING BILEVEL OPTIMIZATION PROBLEMS |
title_short |
Multivariable control structure design based on mixed-integer quadratic programming |
title_full |
Multivariable control structure design based on mixed-integer quadratic programming |
title_fullStr |
Multivariable control structure design based on mixed-integer quadratic programming |
title_full_unstemmed |
Multivariable control structure design based on mixed-integer quadratic programming |
title_sort |
Multivariable control structure design based on mixed-integer quadratic programming |
dc.creator.none.fl_str_mv |
Braccia, Lautaro Marchetti, Pablo Andres Luppi, Patricio Alfredo Zumoffen, David Alejandro Ramon |
author |
Braccia, Lautaro |
author_facet |
Braccia, Lautaro Marchetti, Pablo Andres Luppi, Patricio Alfredo Zumoffen, David Alejandro Ramon |
author_role |
author |
author2 |
Marchetti, Pablo Andres Luppi, Patricio Alfredo Zumoffen, David Alejandro Ramon |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
PLANTWIDE PROCESS CONTROL CONTROL STRUCTURE SELECTION MIXED-INTEGER QUADRATIC PROGRAMMING BILEVEL OPTIMIZATION PROBLEMS |
topic |
PLANTWIDE PROCESS CONTROL CONTROL STRUCTURE SELECTION MIXED-INTEGER QUADRATIC PROGRAMMING BILEVEL OPTIMIZATION PROBLEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work a new approach to address multivariable control structure (MCS) design for medium/large-scale processes is proposed. The classical MCS design methodologies rely on superstructure representations which define sequential and/or bilevel mixed-integer nonlinear programming (MINLP) problems. The main drawbacks of this kind of approach are the complexity of the required solution methods (stochastic/deterministic global search), the computational time, and the optimality of the solution when simplifications are made. Instead, this work shows that, by using the sum of squared deviations (SSD) as well as the net load evaluation (NLE) concepts, the control structure design problem can be formulated as a mixed-integer quadratic programming (MIQP) model with linear constraints, featuring both optimality and improved computational performance due to state-of-the-art solvers. The formulation is implemented in the GAMS environment using CPLEX as the selected solver and two typical case studies are presented to show the benefits of the proposed approach. Fil: Braccia, Lautaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Luppi, Patricio Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Rosario; Argentina |
description |
In this work a new approach to address multivariable control structure (MCS) design for medium/large-scale processes is proposed. The classical MCS design methodologies rely on superstructure representations which define sequential and/or bilevel mixed-integer nonlinear programming (MINLP) problems. The main drawbacks of this kind of approach are the complexity of the required solution methods (stochastic/deterministic global search), the computational time, and the optimality of the solution when simplifications are made. Instead, this work shows that, by using the sum of squared deviations (SSD) as well as the net load evaluation (NLE) concepts, the control structure design problem can be formulated as a mixed-integer quadratic programming (MIQP) model with linear constraints, featuring both optimality and improved computational performance due to state-of-the-art solvers. The formulation is implemented in the GAMS environment using CPLEX as the selected solver and two typical case studies are presented to show the benefits of the proposed approach. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50345 Braccia, Lautaro; Marchetti, Pablo Andres; Luppi, Patricio Alfredo; Zumoffen, David Alejandro Ramon; Multivariable control structure design based on mixed-integer quadratic programming; American Chemical Society; Industrial & Engineering Chemical Research; 56; 39; 9-2017; 11228-11244 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50345 |
identifier_str_mv |
Braccia, Lautaro; Marchetti, Pablo Andres; Luppi, Patricio Alfredo; Zumoffen, David Alejandro Ramon; Multivariable control structure design based on mixed-integer quadratic programming; American Chemical Society; Industrial & Engineering Chemical Research; 56; 39; 9-2017; 11228-11244 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acs.iecr.7b02270 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.7b02270 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606823887699968 |
score |
13.001348 |