Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons

Autores
D'Onofrio, Stasia; Urbano Suarez, Francisco Jose; Messias, Erick; Garcia Rill, Edgar
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Human postmortem studies reported increased expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of some bipolar disorder patients, and reduced or aberrant gamma band activity is present in the same disorder. Bipolar disorder is characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). Lithium (Li+) has been shown to effectively treat the mood disturbances in bipolar disorder patients and was proposed to act by inhibiting the interaction between NCS-1 and inositol 1,4,5-triphosphate receptor protein (InsP3R). NCS-1 is known to enhance the activity of InsP3R, and of Ca2+-mediated gamma oscillatory activity in the pedunculopontine nucleus (PPN), part of the RAS. This study aimed to determine the nature of some of the intracellular mechanisms of Li+ on rat PPN cells and to identify the interaction between Li+ and NCS-1. Since Li+ has been shown to act by inhibiting the enhancing effects of NCS-1, we tested the hypothesis that Li+ would reduce the effects of overexpression of NCS-1 and prevent the downregulation of gamma band activity. Li+ decreased gamma oscillation frequency and amplitude by downregulating Ca2+ channel activity, whereas NCS-1 reduced the effect of Li+ on Ca2+ currents. These effects were mediated by a G-protein overinhibition of Ca2+ currents. These results suggest that Li+ affected intracellular pathways involving the activation of voltage gated Ca2+ channels mediated by an intracellular mechanism involving voltage-dependent activation of G proteins, thereby normalizing gamma band oscillations mediated by P/Q-type calcium channels modulated by NCS-1.
Fil: D'Onofrio, Stasia. University of Arkansas for Medical Sciences; Estados Unidos
Fil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Messias, Erick. University of Arkansas for Medical Sciences; Estados Unidos
Fil: Garcia Rill, Edgar. University of Arkansas for Medical Sciences; Estados Unidos
Materia
PEDUNCULOPONTINE
CALCIUM CHANNELS
LITHIUM
NEURONAL CALCIUM SENSOR 1
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60623

id CONICETDig_b35bbe4150715881b6896147a1221ccf
oai_identifier_str oai:ri.conicet.gov.ar:11336/60623
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neuronsD'Onofrio, StasiaUrbano Suarez, Francisco JoseMessias, ErickGarcia Rill, EdgarPEDUNCULOPONTINECALCIUM CHANNELSLITHIUMNEURONAL CALCIUM SENSOR 1https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Human postmortem studies reported increased expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of some bipolar disorder patients, and reduced or aberrant gamma band activity is present in the same disorder. Bipolar disorder is characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). Lithium (Li+) has been shown to effectively treat the mood disturbances in bipolar disorder patients and was proposed to act by inhibiting the interaction between NCS-1 and inositol 1,4,5-triphosphate receptor protein (InsP3R). NCS-1 is known to enhance the activity of InsP3R, and of Ca2+-mediated gamma oscillatory activity in the pedunculopontine nucleus (PPN), part of the RAS. This study aimed to determine the nature of some of the intracellular mechanisms of Li+ on rat PPN cells and to identify the interaction between Li+ and NCS-1. Since Li+ has been shown to act by inhibiting the enhancing effects of NCS-1, we tested the hypothesis that Li+ would reduce the effects of overexpression of NCS-1 and prevent the downregulation of gamma band activity. Li+ decreased gamma oscillation frequency and amplitude by downregulating Ca2+ channel activity, whereas NCS-1 reduced the effect of Li+ on Ca2+ currents. These effects were mediated by a G-protein overinhibition of Ca2+ currents. These results suggest that Li+ affected intracellular pathways involving the activation of voltage gated Ca2+ channels mediated by an intracellular mechanism involving voltage-dependent activation of G proteins, thereby normalizing gamma band oscillations mediated by P/Q-type calcium channels modulated by NCS-1.Fil: D'Onofrio, Stasia. University of Arkansas for Medical Sciences; Estados UnidosFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Messias, Erick. University of Arkansas for Medical Sciences; Estados UnidosFil: Garcia Rill, Edgar. University of Arkansas for Medical Sciences; Estados UnidosPhysiological Society2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60623D'Onofrio, Stasia; Urbano Suarez, Francisco Jose; Messias, Erick; Garcia Rill, Edgar; Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons; Physiological Society; Physiological Reports; 4; 6; 3-2016; 1-12; e127402051-817XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://physreports.physiology.org/content/4/12/e12787.longinfo:eu-repo/semantics/altIdentifier/doi/ 10.14814/phy2.12740info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814880/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:47Zoai:ri.conicet.gov.ar:11336/60623instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:48.029CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons
title Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons
spellingShingle Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons
D'Onofrio, Stasia
PEDUNCULOPONTINE
CALCIUM CHANNELS
LITHIUM
NEURONAL CALCIUM SENSOR 1
title_short Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons
title_full Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons
title_fullStr Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons
title_full_unstemmed Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons
title_sort Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons
dc.creator.none.fl_str_mv D'Onofrio, Stasia
Urbano Suarez, Francisco Jose
Messias, Erick
Garcia Rill, Edgar
author D'Onofrio, Stasia
author_facet D'Onofrio, Stasia
Urbano Suarez, Francisco Jose
Messias, Erick
Garcia Rill, Edgar
author_role author
author2 Urbano Suarez, Francisco Jose
Messias, Erick
Garcia Rill, Edgar
author2_role author
author
author
dc.subject.none.fl_str_mv PEDUNCULOPONTINE
CALCIUM CHANNELS
LITHIUM
NEURONAL CALCIUM SENSOR 1
topic PEDUNCULOPONTINE
CALCIUM CHANNELS
LITHIUM
NEURONAL CALCIUM SENSOR 1
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Human postmortem studies reported increased expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of some bipolar disorder patients, and reduced or aberrant gamma band activity is present in the same disorder. Bipolar disorder is characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). Lithium (Li+) has been shown to effectively treat the mood disturbances in bipolar disorder patients and was proposed to act by inhibiting the interaction between NCS-1 and inositol 1,4,5-triphosphate receptor protein (InsP3R). NCS-1 is known to enhance the activity of InsP3R, and of Ca2+-mediated gamma oscillatory activity in the pedunculopontine nucleus (PPN), part of the RAS. This study aimed to determine the nature of some of the intracellular mechanisms of Li+ on rat PPN cells and to identify the interaction between Li+ and NCS-1. Since Li+ has been shown to act by inhibiting the enhancing effects of NCS-1, we tested the hypothesis that Li+ would reduce the effects of overexpression of NCS-1 and prevent the downregulation of gamma band activity. Li+ decreased gamma oscillation frequency and amplitude by downregulating Ca2+ channel activity, whereas NCS-1 reduced the effect of Li+ on Ca2+ currents. These effects were mediated by a G-protein overinhibition of Ca2+ currents. These results suggest that Li+ affected intracellular pathways involving the activation of voltage gated Ca2+ channels mediated by an intracellular mechanism involving voltage-dependent activation of G proteins, thereby normalizing gamma band oscillations mediated by P/Q-type calcium channels modulated by NCS-1.
Fil: D'Onofrio, Stasia. University of Arkansas for Medical Sciences; Estados Unidos
Fil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Messias, Erick. University of Arkansas for Medical Sciences; Estados Unidos
Fil: Garcia Rill, Edgar. University of Arkansas for Medical Sciences; Estados Unidos
description Human postmortem studies reported increased expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of some bipolar disorder patients, and reduced or aberrant gamma band activity is present in the same disorder. Bipolar disorder is characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). Lithium (Li+) has been shown to effectively treat the mood disturbances in bipolar disorder patients and was proposed to act by inhibiting the interaction between NCS-1 and inositol 1,4,5-triphosphate receptor protein (InsP3R). NCS-1 is known to enhance the activity of InsP3R, and of Ca2+-mediated gamma oscillatory activity in the pedunculopontine nucleus (PPN), part of the RAS. This study aimed to determine the nature of some of the intracellular mechanisms of Li+ on rat PPN cells and to identify the interaction between Li+ and NCS-1. Since Li+ has been shown to act by inhibiting the enhancing effects of NCS-1, we tested the hypothesis that Li+ would reduce the effects of overexpression of NCS-1 and prevent the downregulation of gamma band activity. Li+ decreased gamma oscillation frequency and amplitude by downregulating Ca2+ channel activity, whereas NCS-1 reduced the effect of Li+ on Ca2+ currents. These effects were mediated by a G-protein overinhibition of Ca2+ currents. These results suggest that Li+ affected intracellular pathways involving the activation of voltage gated Ca2+ channels mediated by an intracellular mechanism involving voltage-dependent activation of G proteins, thereby normalizing gamma band oscillations mediated by P/Q-type calcium channels modulated by NCS-1.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60623
D'Onofrio, Stasia; Urbano Suarez, Francisco Jose; Messias, Erick; Garcia Rill, Edgar; Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons; Physiological Society; Physiological Reports; 4; 6; 3-2016; 1-12; e12740
2051-817X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60623
identifier_str_mv D'Onofrio, Stasia; Urbano Suarez, Francisco Jose; Messias, Erick; Garcia Rill, Edgar; Lithium decreases the effects of neuronal calcium sensor protein 1 on pedunculopontine neurons; Physiological Society; Physiological Reports; 4; 6; 3-2016; 1-12; e12740
2051-817X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://physreports.physiology.org/content/4/12/e12787.long
info:eu-repo/semantics/altIdentifier/doi/ 10.14814/phy2.12740
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814880/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Physiological Society
publisher.none.fl_str_mv Physiological Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613898040246272
score 13.070432