A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana

Autores
Arico, Denise Soledad; Beati, Maria Paula; Wengier, Diego Leonardo; Mazzella, Maria Agustina
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Proteins are the workforce of the cell and their phosphorylation status tailors specific responses efficiently. One of the main challenges of phosphoproteomic approaches is to deconvolute biological processes that specifically respond to an experimental query from a list of phosphoproteins. Comparison of the frequency distribution of GO (Gene Ontology) terms in a given phosphoproteome set with that observed in the genome reference set (GenRS) is the most widely used tool to infer biological significance. Yet, this comparison assumes that GO term distribution between the phosphoproteome and the genome are identical. However, this hypothesis has not been tested due to the lack of a comprehensive phosphoproteome database. Results: In this study, we test this hypothesis by constructing three phosphoproteome databases in Arabidopsis thaliana: one based in experimental data (ExpRS), another based in in silico phosphorylation protein prediction (PredRS) and a third that is the union of both (UnRS). Our results show that the three phosphoproteome reference sets show default enrichment of several GO terms compared to GenRS, indicating that GO term distribution in the phosphoproteomes does not match that of the genome. Moreover, these differences overshadow the identification of GO terms that are specifically enriched in a particular condition. To overcome this limitation, we present an additional comparison of the sample of interest with UnRS to uncover GO terms specifically enriched in a particular phosphoproteome experiment. Using this strategy, we found that mRNA splicing and cytoplasmic microtubule compounds are important processes specifically enriched in the phosphoproteome of dark-grown Arabidopsis seedlings. Conclusions: This study provides a novel strategy to uncover GO specific terms in phosphoproteome data of Arabidopsis that could be applied to any other organism. We also highlight the importance of specific phosphorylation pathways that take place during dark-grown Arabidopsis development.
Fil: Arico, Denise Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Beati, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Wengier, Diego Leonardo. University of Stanford; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Mazzella, Maria Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Materia
ARABIDOPSIS THALIANA
ETIOLATION
GENE ONTOLOGY
PHOSPHOPROTEOME
REFERENCE DATASETS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/158982

id CONICETDig_b32e07695b5bf0cf1869737a5cb8db3f
oai_identifier_str oai:ri.conicet.gov.ar:11336/158982
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thalianaArico, Denise SoledadBeati, Maria PaulaWengier, Diego LeonardoMazzella, Maria AgustinaARABIDOPSIS THALIANAETIOLATIONGENE ONTOLOGYPHOSPHOPROTEOMEREFERENCE DATASETShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: Proteins are the workforce of the cell and their phosphorylation status tailors specific responses efficiently. One of the main challenges of phosphoproteomic approaches is to deconvolute biological processes that specifically respond to an experimental query from a list of phosphoproteins. Comparison of the frequency distribution of GO (Gene Ontology) terms in a given phosphoproteome set with that observed in the genome reference set (GenRS) is the most widely used tool to infer biological significance. Yet, this comparison assumes that GO term distribution between the phosphoproteome and the genome are identical. However, this hypothesis has not been tested due to the lack of a comprehensive phosphoproteome database. Results: In this study, we test this hypothesis by constructing three phosphoproteome databases in Arabidopsis thaliana: one based in experimental data (ExpRS), another based in in silico phosphorylation protein prediction (PredRS) and a third that is the union of both (UnRS). Our results show that the three phosphoproteome reference sets show default enrichment of several GO terms compared to GenRS, indicating that GO term distribution in the phosphoproteomes does not match that of the genome. Moreover, these differences overshadow the identification of GO terms that are specifically enriched in a particular condition. To overcome this limitation, we present an additional comparison of the sample of interest with UnRS to uncover GO terms specifically enriched in a particular phosphoproteome experiment. Using this strategy, we found that mRNA splicing and cytoplasmic microtubule compounds are important processes specifically enriched in the phosphoproteome of dark-grown Arabidopsis seedlings. Conclusions: This study provides a novel strategy to uncover GO specific terms in phosphoproteome data of Arabidopsis that could be applied to any other organism. We also highlight the importance of specific phosphorylation pathways that take place during dark-grown Arabidopsis development.Fil: Arico, Denise Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Beati, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Wengier, Diego Leonardo. University of Stanford; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Mazzella, Maria Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaBioMed Central2021-12-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158982Arico, Denise Soledad; Beati, Maria Paula; Wengier, Diego Leonardo; Mazzella, Maria Agustina; A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana; BioMed Central; BMC Plant Biology; 21; 14-12-2021; 1-141471-2229CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s12870-021-03377-9info:eu-repo/semantics/altIdentifier/url/https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-021-03377-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:07Zoai:ri.conicet.gov.ar:11336/158982instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:08.257CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana
title A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana
spellingShingle A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana
Arico, Denise Soledad
ARABIDOPSIS THALIANA
ETIOLATION
GENE ONTOLOGY
PHOSPHOPROTEOME
REFERENCE DATASETS
title_short A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana
title_full A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana
title_fullStr A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana
title_full_unstemmed A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana
title_sort A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana
dc.creator.none.fl_str_mv Arico, Denise Soledad
Beati, Maria Paula
Wengier, Diego Leonardo
Mazzella, Maria Agustina
author Arico, Denise Soledad
author_facet Arico, Denise Soledad
Beati, Maria Paula
Wengier, Diego Leonardo
Mazzella, Maria Agustina
author_role author
author2 Beati, Maria Paula
Wengier, Diego Leonardo
Mazzella, Maria Agustina
author2_role author
author
author
dc.subject.none.fl_str_mv ARABIDOPSIS THALIANA
ETIOLATION
GENE ONTOLOGY
PHOSPHOPROTEOME
REFERENCE DATASETS
topic ARABIDOPSIS THALIANA
ETIOLATION
GENE ONTOLOGY
PHOSPHOPROTEOME
REFERENCE DATASETS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background: Proteins are the workforce of the cell and their phosphorylation status tailors specific responses efficiently. One of the main challenges of phosphoproteomic approaches is to deconvolute biological processes that specifically respond to an experimental query from a list of phosphoproteins. Comparison of the frequency distribution of GO (Gene Ontology) terms in a given phosphoproteome set with that observed in the genome reference set (GenRS) is the most widely used tool to infer biological significance. Yet, this comparison assumes that GO term distribution between the phosphoproteome and the genome are identical. However, this hypothesis has not been tested due to the lack of a comprehensive phosphoproteome database. Results: In this study, we test this hypothesis by constructing three phosphoproteome databases in Arabidopsis thaliana: one based in experimental data (ExpRS), another based in in silico phosphorylation protein prediction (PredRS) and a third that is the union of both (UnRS). Our results show that the three phosphoproteome reference sets show default enrichment of several GO terms compared to GenRS, indicating that GO term distribution in the phosphoproteomes does not match that of the genome. Moreover, these differences overshadow the identification of GO terms that are specifically enriched in a particular condition. To overcome this limitation, we present an additional comparison of the sample of interest with UnRS to uncover GO terms specifically enriched in a particular phosphoproteome experiment. Using this strategy, we found that mRNA splicing and cytoplasmic microtubule compounds are important processes specifically enriched in the phosphoproteome of dark-grown Arabidopsis seedlings. Conclusions: This study provides a novel strategy to uncover GO specific terms in phosphoproteome data of Arabidopsis that could be applied to any other organism. We also highlight the importance of specific phosphorylation pathways that take place during dark-grown Arabidopsis development.
Fil: Arico, Denise Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Beati, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Wengier, Diego Leonardo. University of Stanford; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
Fil: Mazzella, Maria Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina
description Background: Proteins are the workforce of the cell and their phosphorylation status tailors specific responses efficiently. One of the main challenges of phosphoproteomic approaches is to deconvolute biological processes that specifically respond to an experimental query from a list of phosphoproteins. Comparison of the frequency distribution of GO (Gene Ontology) terms in a given phosphoproteome set with that observed in the genome reference set (GenRS) is the most widely used tool to infer biological significance. Yet, this comparison assumes that GO term distribution between the phosphoproteome and the genome are identical. However, this hypothesis has not been tested due to the lack of a comprehensive phosphoproteome database. Results: In this study, we test this hypothesis by constructing three phosphoproteome databases in Arabidopsis thaliana: one based in experimental data (ExpRS), another based in in silico phosphorylation protein prediction (PredRS) and a third that is the union of both (UnRS). Our results show that the three phosphoproteome reference sets show default enrichment of several GO terms compared to GenRS, indicating that GO term distribution in the phosphoproteomes does not match that of the genome. Moreover, these differences overshadow the identification of GO terms that are specifically enriched in a particular condition. To overcome this limitation, we present an additional comparison of the sample of interest with UnRS to uncover GO terms specifically enriched in a particular phosphoproteome experiment. Using this strategy, we found that mRNA splicing and cytoplasmic microtubule compounds are important processes specifically enriched in the phosphoproteome of dark-grown Arabidopsis seedlings. Conclusions: This study provides a novel strategy to uncover GO specific terms in phosphoproteome data of Arabidopsis that could be applied to any other organism. We also highlight the importance of specific phosphorylation pathways that take place during dark-grown Arabidopsis development.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-14
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/158982
Arico, Denise Soledad; Beati, Maria Paula; Wengier, Diego Leonardo; Mazzella, Maria Agustina; A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana; BioMed Central; BMC Plant Biology; 21; 14-12-2021; 1-14
1471-2229
CONICET Digital
CONICET
url http://hdl.handle.net/11336/158982
identifier_str_mv Arico, Denise Soledad; Beati, Maria Paula; Wengier, Diego Leonardo; Mazzella, Maria Agustina; A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana; BioMed Central; BMC Plant Biology; 21; 14-12-2021; 1-14
1471-2229
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1186/s12870-021-03377-9
info:eu-repo/semantics/altIdentifier/url/https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-021-03377-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613600189087744
score 13.070432