Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case
- Autores
- Solazzi, Santiago Gabriel; Hunziker, Jürg; Caspari, Eva; Rubino, Jorge German; Favino, Marco; Holliger, Klaus
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Seismic attenuation and phase velocity dispersion due to mesoscopic fluid pressure diffusion (FPD) have received increasing attention due to their inherent sensitivity to the hydromechanical properties of monosaturated fractured porous media. While FPD processes are directly affected by key macroscopic properties of fractured rocks, such as fracture density and fracture connectivity, there is, as of yet, a lack of comprehension of the associated characteristics when multiple immiscible phases saturate the probed fractured medium. In this work, we analyze the variations experienced by P and S wave attenuation and phase velocity dispersion when CO2 percolates into an initially brine-saturated fractured porous rock. We study such variations considering a simple model of a porous rock containing intersecting orthogonal fractures as well as a more complex model comprising a fracture network. In the latter, we simulate the flow of a CO2 plume into the medium using an invasion percolation procedure. Representative samples are subjected to numerical upscaling experiments, consisting of compression and shear tests, prior to and after the CO2 invasion process. Results show that fracture-to-background FPD is only sensitive to the presence of CO2, which decreases its effects. However, fracture-to-fracture FPD depends on both the overall CO2 saturation and the fluid distribution within the fracture network. While the former modulates the magnitude of the dissipation, the latter can give rise to a novel FPD process occurring between CO2-saturated and brine-saturated regions of the fracture network.
Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hunziker, Jürg. Universite de Lausanne; Suiza
Fil: Caspari, Eva. Universite de Lausanne; Suiza. Montanuniversität Leoben; Austria
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Favino, Marco. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza. Zhejiang University; República de China - Materia
-
FRACTURED MEDIA
NUMERICAL MODELING
PARTIAL SATURATION
POROUS MEDIA
SEISMIC ATTENUATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/140405
Ver los metadatos del registro completo
id |
CONICETDig_3d100b62bdff215fbd8ff01375293cd3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/140405 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Seismic Signatures of Fractured Porous Rocks: The Partially Saturated CaseSolazzi, Santiago GabrielHunziker, JürgCaspari, EvaRubino, Jorge GermanFavino, MarcoHolliger, KlausFRACTURED MEDIANUMERICAL MODELINGPARTIAL SATURATIONPOROUS MEDIASEISMIC ATTENUATIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Seismic attenuation and phase velocity dispersion due to mesoscopic fluid pressure diffusion (FPD) have received increasing attention due to their inherent sensitivity to the hydromechanical properties of monosaturated fractured porous media. While FPD processes are directly affected by key macroscopic properties of fractured rocks, such as fracture density and fracture connectivity, there is, as of yet, a lack of comprehension of the associated characteristics when multiple immiscible phases saturate the probed fractured medium. In this work, we analyze the variations experienced by P and S wave attenuation and phase velocity dispersion when CO2 percolates into an initially brine-saturated fractured porous rock. We study such variations considering a simple model of a porous rock containing intersecting orthogonal fractures as well as a more complex model comprising a fracture network. In the latter, we simulate the flow of a CO2 plume into the medium using an invasion percolation procedure. Representative samples are subjected to numerical upscaling experiments, consisting of compression and shear tests, prior to and after the CO2 invasion process. Results show that fracture-to-background FPD is only sensitive to the presence of CO2, which decreases its effects. However, fracture-to-fracture FPD depends on both the overall CO2 saturation and the fluid distribution within the fracture network. While the former modulates the magnitude of the dissipation, the latter can give rise to a novel FPD process occurring between CO2-saturated and brine-saturated regions of the fracture network.Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hunziker, Jürg. Universite de Lausanne; SuizaFil: Caspari, Eva. Universite de Lausanne; Suiza. Montanuniversität Leoben; AustriaFil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Favino, Marco. Universite de Lausanne; SuizaFil: Holliger, Klaus. Universite de Lausanne; Suiza. Zhejiang University; República de ChinaBlackwell Publishing2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140405Solazzi, Santiago Gabriel; Hunziker, Jürg; Caspari, Eva; Rubino, Jorge German; Favino, Marco; et al.; Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 125; 8; 8-2020; 1-162169-9313CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB019960info:eu-repo/semantics/altIdentifier/doi/10.1029/2020JB019960info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:04Zoai:ri.conicet.gov.ar:11336/140405instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:05.046CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case |
title |
Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case |
spellingShingle |
Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case Solazzi, Santiago Gabriel FRACTURED MEDIA NUMERICAL MODELING PARTIAL SATURATION POROUS MEDIA SEISMIC ATTENUATION |
title_short |
Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case |
title_full |
Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case |
title_fullStr |
Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case |
title_full_unstemmed |
Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case |
title_sort |
Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case |
dc.creator.none.fl_str_mv |
Solazzi, Santiago Gabriel Hunziker, Jürg Caspari, Eva Rubino, Jorge German Favino, Marco Holliger, Klaus |
author |
Solazzi, Santiago Gabriel |
author_facet |
Solazzi, Santiago Gabriel Hunziker, Jürg Caspari, Eva Rubino, Jorge German Favino, Marco Holliger, Klaus |
author_role |
author |
author2 |
Hunziker, Jürg Caspari, Eva Rubino, Jorge German Favino, Marco Holliger, Klaus |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
FRACTURED MEDIA NUMERICAL MODELING PARTIAL SATURATION POROUS MEDIA SEISMIC ATTENUATION |
topic |
FRACTURED MEDIA NUMERICAL MODELING PARTIAL SATURATION POROUS MEDIA SEISMIC ATTENUATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Seismic attenuation and phase velocity dispersion due to mesoscopic fluid pressure diffusion (FPD) have received increasing attention due to their inherent sensitivity to the hydromechanical properties of monosaturated fractured porous media. While FPD processes are directly affected by key macroscopic properties of fractured rocks, such as fracture density and fracture connectivity, there is, as of yet, a lack of comprehension of the associated characteristics when multiple immiscible phases saturate the probed fractured medium. In this work, we analyze the variations experienced by P and S wave attenuation and phase velocity dispersion when CO2 percolates into an initially brine-saturated fractured porous rock. We study such variations considering a simple model of a porous rock containing intersecting orthogonal fractures as well as a more complex model comprising a fracture network. In the latter, we simulate the flow of a CO2 plume into the medium using an invasion percolation procedure. Representative samples are subjected to numerical upscaling experiments, consisting of compression and shear tests, prior to and after the CO2 invasion process. Results show that fracture-to-background FPD is only sensitive to the presence of CO2, which decreases its effects. However, fracture-to-fracture FPD depends on both the overall CO2 saturation and the fluid distribution within the fracture network. While the former modulates the magnitude of the dissipation, the latter can give rise to a novel FPD process occurring between CO2-saturated and brine-saturated regions of the fracture network. Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hunziker, Jürg. Universite de Lausanne; Suiza Fil: Caspari, Eva. Universite de Lausanne; Suiza. Montanuniversität Leoben; Austria Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Favino, Marco. Universite de Lausanne; Suiza Fil: Holliger, Klaus. Universite de Lausanne; Suiza. Zhejiang University; República de China |
description |
Seismic attenuation and phase velocity dispersion due to mesoscopic fluid pressure diffusion (FPD) have received increasing attention due to their inherent sensitivity to the hydromechanical properties of monosaturated fractured porous media. While FPD processes are directly affected by key macroscopic properties of fractured rocks, such as fracture density and fracture connectivity, there is, as of yet, a lack of comprehension of the associated characteristics when multiple immiscible phases saturate the probed fractured medium. In this work, we analyze the variations experienced by P and S wave attenuation and phase velocity dispersion when CO2 percolates into an initially brine-saturated fractured porous rock. We study such variations considering a simple model of a porous rock containing intersecting orthogonal fractures as well as a more complex model comprising a fracture network. In the latter, we simulate the flow of a CO2 plume into the medium using an invasion percolation procedure. Representative samples are subjected to numerical upscaling experiments, consisting of compression and shear tests, prior to and after the CO2 invasion process. Results show that fracture-to-background FPD is only sensitive to the presence of CO2, which decreases its effects. However, fracture-to-fracture FPD depends on both the overall CO2 saturation and the fluid distribution within the fracture network. While the former modulates the magnitude of the dissipation, the latter can give rise to a novel FPD process occurring between CO2-saturated and brine-saturated regions of the fracture network. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/140405 Solazzi, Santiago Gabriel; Hunziker, Jürg; Caspari, Eva; Rubino, Jorge German; Favino, Marco; et al.; Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 125; 8; 8-2020; 1-16 2169-9313 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/140405 |
identifier_str_mv |
Solazzi, Santiago Gabriel; Hunziker, Jürg; Caspari, Eva; Rubino, Jorge German; Favino, Marco; et al.; Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 125; 8; 8-2020; 1-16 2169-9313 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB019960 info:eu-repo/semantics/altIdentifier/doi/10.1029/2020JB019960 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Blackwell Publishing |
publisher.none.fl_str_mv |
Blackwell Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613863926923264 |
score |
13.070432 |