Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case

Autores
Solazzi, Santiago Gabriel; Hunziker, Jürg; Caspari, Eva; Rubino, Jorge German; Favino, Marco; Holliger, Klaus
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Seismic attenuation and phase velocity dispersion due to mesoscopic fluid pressure diffusion (FPD) have received increasing attention due to their inherent sensitivity to the hydromechanical properties of monosaturated fractured porous media. While FPD processes are directly affected by key macroscopic properties of fractured rocks, such as fracture density and fracture connectivity, there is, as of yet, a lack of comprehension of the associated characteristics when multiple immiscible phases saturate the probed fractured medium. In this work, we analyze the variations experienced by P and S wave attenuation and phase velocity dispersion when CO2 percolates into an initially brine-saturated fractured porous rock. We study such variations considering a simple model of a porous rock containing intersecting orthogonal fractures as well as a more complex model comprising a fracture network. In the latter, we simulate the flow of a CO2 plume into the medium using an invasion percolation procedure. Representative samples are subjected to numerical upscaling experiments, consisting of compression and shear tests, prior to and after the CO2 invasion process. Results show that fracture-to-background FPD is only sensitive to the presence of CO2, which decreases its effects. However, fracture-to-fracture FPD depends on both the overall CO2 saturation and the fluid distribution within the fracture network. While the former modulates the magnitude of the dissipation, the latter can give rise to a novel FPD process occurring between CO2-saturated and brine-saturated regions of the fracture network.
Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hunziker, Jürg. Universite de Lausanne; Suiza
Fil: Caspari, Eva. Universite de Lausanne; Suiza. Montanuniversität Leoben; Austria
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Favino, Marco. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza. Zhejiang University; República de China
Materia
FRACTURED MEDIA
NUMERICAL MODELING
PARTIAL SATURATION
POROUS MEDIA
SEISMIC ATTENUATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/140405

id CONICETDig_3d100b62bdff215fbd8ff01375293cd3
oai_identifier_str oai:ri.conicet.gov.ar:11336/140405
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Seismic Signatures of Fractured Porous Rocks: The Partially Saturated CaseSolazzi, Santiago GabrielHunziker, JürgCaspari, EvaRubino, Jorge GermanFavino, MarcoHolliger, KlausFRACTURED MEDIANUMERICAL MODELINGPARTIAL SATURATIONPOROUS MEDIASEISMIC ATTENUATIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Seismic attenuation and phase velocity dispersion due to mesoscopic fluid pressure diffusion (FPD) have received increasing attention due to their inherent sensitivity to the hydromechanical properties of monosaturated fractured porous media. While FPD processes are directly affected by key macroscopic properties of fractured rocks, such as fracture density and fracture connectivity, there is, as of yet, a lack of comprehension of the associated characteristics when multiple immiscible phases saturate the probed fractured medium. In this work, we analyze the variations experienced by P and S wave attenuation and phase velocity dispersion when CO2 percolates into an initially brine-saturated fractured porous rock. We study such variations considering a simple model of a porous rock containing intersecting orthogonal fractures as well as a more complex model comprising a fracture network. In the latter, we simulate the flow of a CO2 plume into the medium using an invasion percolation procedure. Representative samples are subjected to numerical upscaling experiments, consisting of compression and shear tests, prior to and after the CO2 invasion process. Results show that fracture-to-background FPD is only sensitive to the presence of CO2, which decreases its effects. However, fracture-to-fracture FPD depends on both the overall CO2 saturation and the fluid distribution within the fracture network. While the former modulates the magnitude of the dissipation, the latter can give rise to a novel FPD process occurring between CO2-saturated and brine-saturated regions of the fracture network.Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hunziker, Jürg. Universite de Lausanne; SuizaFil: Caspari, Eva. Universite de Lausanne; Suiza. Montanuniversität Leoben; AustriaFil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Favino, Marco. Universite de Lausanne; SuizaFil: Holliger, Klaus. Universite de Lausanne; Suiza. Zhejiang University; República de ChinaBlackwell Publishing2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140405Solazzi, Santiago Gabriel; Hunziker, Jürg; Caspari, Eva; Rubino, Jorge German; Favino, Marco; et al.; Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 125; 8; 8-2020; 1-162169-9313CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB019960info:eu-repo/semantics/altIdentifier/doi/10.1029/2020JB019960info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:04Zoai:ri.conicet.gov.ar:11336/140405instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:05.046CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case
title Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case
spellingShingle Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case
Solazzi, Santiago Gabriel
FRACTURED MEDIA
NUMERICAL MODELING
PARTIAL SATURATION
POROUS MEDIA
SEISMIC ATTENUATION
title_short Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case
title_full Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case
title_fullStr Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case
title_full_unstemmed Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case
title_sort Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case
dc.creator.none.fl_str_mv Solazzi, Santiago Gabriel
Hunziker, Jürg
Caspari, Eva
Rubino, Jorge German
Favino, Marco
Holliger, Klaus
author Solazzi, Santiago Gabriel
author_facet Solazzi, Santiago Gabriel
Hunziker, Jürg
Caspari, Eva
Rubino, Jorge German
Favino, Marco
Holliger, Klaus
author_role author
author2 Hunziker, Jürg
Caspari, Eva
Rubino, Jorge German
Favino, Marco
Holliger, Klaus
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv FRACTURED MEDIA
NUMERICAL MODELING
PARTIAL SATURATION
POROUS MEDIA
SEISMIC ATTENUATION
topic FRACTURED MEDIA
NUMERICAL MODELING
PARTIAL SATURATION
POROUS MEDIA
SEISMIC ATTENUATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Seismic attenuation and phase velocity dispersion due to mesoscopic fluid pressure diffusion (FPD) have received increasing attention due to their inherent sensitivity to the hydromechanical properties of monosaturated fractured porous media. While FPD processes are directly affected by key macroscopic properties of fractured rocks, such as fracture density and fracture connectivity, there is, as of yet, a lack of comprehension of the associated characteristics when multiple immiscible phases saturate the probed fractured medium. In this work, we analyze the variations experienced by P and S wave attenuation and phase velocity dispersion when CO2 percolates into an initially brine-saturated fractured porous rock. We study such variations considering a simple model of a porous rock containing intersecting orthogonal fractures as well as a more complex model comprising a fracture network. In the latter, we simulate the flow of a CO2 plume into the medium using an invasion percolation procedure. Representative samples are subjected to numerical upscaling experiments, consisting of compression and shear tests, prior to and after the CO2 invasion process. Results show that fracture-to-background FPD is only sensitive to the presence of CO2, which decreases its effects. However, fracture-to-fracture FPD depends on both the overall CO2 saturation and the fluid distribution within the fracture network. While the former modulates the magnitude of the dissipation, the latter can give rise to a novel FPD process occurring between CO2-saturated and brine-saturated regions of the fracture network.
Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hunziker, Jürg. Universite de Lausanne; Suiza
Fil: Caspari, Eva. Universite de Lausanne; Suiza. Montanuniversität Leoben; Austria
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Favino, Marco. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza. Zhejiang University; República de China
description Seismic attenuation and phase velocity dispersion due to mesoscopic fluid pressure diffusion (FPD) have received increasing attention due to their inherent sensitivity to the hydromechanical properties of monosaturated fractured porous media. While FPD processes are directly affected by key macroscopic properties of fractured rocks, such as fracture density and fracture connectivity, there is, as of yet, a lack of comprehension of the associated characteristics when multiple immiscible phases saturate the probed fractured medium. In this work, we analyze the variations experienced by P and S wave attenuation and phase velocity dispersion when CO2 percolates into an initially brine-saturated fractured porous rock. We study such variations considering a simple model of a porous rock containing intersecting orthogonal fractures as well as a more complex model comprising a fracture network. In the latter, we simulate the flow of a CO2 plume into the medium using an invasion percolation procedure. Representative samples are subjected to numerical upscaling experiments, consisting of compression and shear tests, prior to and after the CO2 invasion process. Results show that fracture-to-background FPD is only sensitive to the presence of CO2, which decreases its effects. However, fracture-to-fracture FPD depends on both the overall CO2 saturation and the fluid distribution within the fracture network. While the former modulates the magnitude of the dissipation, the latter can give rise to a novel FPD process occurring between CO2-saturated and brine-saturated regions of the fracture network.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/140405
Solazzi, Santiago Gabriel; Hunziker, Jürg; Caspari, Eva; Rubino, Jorge German; Favino, Marco; et al.; Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 125; 8; 8-2020; 1-16
2169-9313
CONICET Digital
CONICET
url http://hdl.handle.net/11336/140405
identifier_str_mv Solazzi, Santiago Gabriel; Hunziker, Jürg; Caspari, Eva; Rubino, Jorge German; Favino, Marco; et al.; Seismic Signatures of Fractured Porous Rocks: The Partially Saturated Case; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 125; 8; 8-2020; 1-16
2169-9313
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB019960
info:eu-repo/semantics/altIdentifier/doi/10.1029/2020JB019960
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Blackwell Publishing
publisher.none.fl_str_mv Blackwell Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613863926923264
score 13.070432