Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis
- Autores
- Wess, Robert J.; Nores Pondal, Federico Jose; Laborde, Miguel Ángel; Giunta, Pablo Daniel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The effect of CO2 removal with CaO in the production and purification of fuel cell-grade H2 by glycerol steam reforming is studied from a thermodynamic point of view. Results obtained with the non-stoichiometric method show that CaO enables some improvements to the conventional steam reforming since four simultaneous processes take place at the same stage: H2 production, CO2 separation, CO elimination and heat supply: by separating the CO2 from the gaseous mixture, CaO also shifts the equilibrium towards the production of H2 compared to conventional reforming, and the operating temperature is lowered with respect to conventional steam reforming. The removal of CO2 not only enables higher H2 purity (close to 100% on dry basis) but reduces the amounts of CO as well. For temperatures below ca. 750K, a level lower than 20ppm (on dry basis) can be reached, thus avoiding the need of a purification stage. Since the reaction of CaO with CO2 is exothermic, the heat is supplied within the reactor. Finally, it was found that the system behavior was strongly dependent on the presence of Ca(OH)2.This four-in-one process can be a way of enhancing the efficiency of the overall system of production-purification of H2.
Fil: Wess, Robert J.. Institute of Chemical Process Engineering; Alemania
Fil: Nores Pondal, Federico Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina
Fil: Laborde, Miguel Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina
Fil: Giunta, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina - Materia
-
Glycerol Steam Reforming
H2 Production
Non-Stoichiometric Method
Pem Fuel Cell
Purification
Sorption-Enhanced Process - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50065
Ver los metadatos del registro completo
id |
CONICETDig_b2b073620aeb591b6b4db53b825b6b00 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50065 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysisWess, Robert J.Nores Pondal, Federico JoseLaborde, Miguel ÁngelGiunta, Pablo DanielGlycerol Steam ReformingH2 ProductionNon-Stoichiometric MethodPem Fuel CellPurificationSorption-Enhanced Processhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The effect of CO2 removal with CaO in the production and purification of fuel cell-grade H2 by glycerol steam reforming is studied from a thermodynamic point of view. Results obtained with the non-stoichiometric method show that CaO enables some improvements to the conventional steam reforming since four simultaneous processes take place at the same stage: H2 production, CO2 separation, CO elimination and heat supply: by separating the CO2 from the gaseous mixture, CaO also shifts the equilibrium towards the production of H2 compared to conventional reforming, and the operating temperature is lowered with respect to conventional steam reforming. The removal of CO2 not only enables higher H2 purity (close to 100% on dry basis) but reduces the amounts of CO as well. For temperatures below ca. 750K, a level lower than 20ppm (on dry basis) can be reached, thus avoiding the need of a purification stage. Since the reaction of CaO with CO2 is exothermic, the heat is supplied within the reactor. Finally, it was found that the system behavior was strongly dependent on the presence of Ca(OH)2.This four-in-one process can be a way of enhancing the efficiency of the overall system of production-purification of H2.Fil: Wess, Robert J.. Institute of Chemical Process Engineering; AlemaniaFil: Nores Pondal, Federico Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; ArgentinaFil: Laborde, Miguel Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; ArgentinaFil: Giunta, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; ArgentinaPergamon-Elsevier Science Ltd2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50065Wess, Robert J. ; Nores Pondal, Federico Jose; Laborde, Miguel Ángel; Giunta, Pablo Daniel; Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 134; 9-2015; 86-950009-2509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2015.04.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009250915002407info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:49Zoai:ri.conicet.gov.ar:11336/50065instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:49.741CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis |
title |
Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis |
spellingShingle |
Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis Wess, Robert J. Glycerol Steam Reforming H2 Production Non-Stoichiometric Method Pem Fuel Cell Purification Sorption-Enhanced Process |
title_short |
Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis |
title_full |
Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis |
title_fullStr |
Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis |
title_full_unstemmed |
Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis |
title_sort |
Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis |
dc.creator.none.fl_str_mv |
Wess, Robert J. Nores Pondal, Federico Jose Laborde, Miguel Ángel Giunta, Pablo Daniel |
author |
Wess, Robert J. |
author_facet |
Wess, Robert J. Nores Pondal, Federico Jose Laborde, Miguel Ángel Giunta, Pablo Daniel |
author_role |
author |
author2 |
Nores Pondal, Federico Jose Laborde, Miguel Ángel Giunta, Pablo Daniel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Glycerol Steam Reforming H2 Production Non-Stoichiometric Method Pem Fuel Cell Purification Sorption-Enhanced Process |
topic |
Glycerol Steam Reforming H2 Production Non-Stoichiometric Method Pem Fuel Cell Purification Sorption-Enhanced Process |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The effect of CO2 removal with CaO in the production and purification of fuel cell-grade H2 by glycerol steam reforming is studied from a thermodynamic point of view. Results obtained with the non-stoichiometric method show that CaO enables some improvements to the conventional steam reforming since four simultaneous processes take place at the same stage: H2 production, CO2 separation, CO elimination and heat supply: by separating the CO2 from the gaseous mixture, CaO also shifts the equilibrium towards the production of H2 compared to conventional reforming, and the operating temperature is lowered with respect to conventional steam reforming. The removal of CO2 not only enables higher H2 purity (close to 100% on dry basis) but reduces the amounts of CO as well. For temperatures below ca. 750K, a level lower than 20ppm (on dry basis) can be reached, thus avoiding the need of a purification stage. Since the reaction of CaO with CO2 is exothermic, the heat is supplied within the reactor. Finally, it was found that the system behavior was strongly dependent on the presence of Ca(OH)2.This four-in-one process can be a way of enhancing the efficiency of the overall system of production-purification of H2. Fil: Wess, Robert J.. Institute of Chemical Process Engineering; Alemania Fil: Nores Pondal, Federico Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina Fil: Laborde, Miguel Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina Fil: Giunta, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina |
description |
The effect of CO2 removal with CaO in the production and purification of fuel cell-grade H2 by glycerol steam reforming is studied from a thermodynamic point of view. Results obtained with the non-stoichiometric method show that CaO enables some improvements to the conventional steam reforming since four simultaneous processes take place at the same stage: H2 production, CO2 separation, CO elimination and heat supply: by separating the CO2 from the gaseous mixture, CaO also shifts the equilibrium towards the production of H2 compared to conventional reforming, and the operating temperature is lowered with respect to conventional steam reforming. The removal of CO2 not only enables higher H2 purity (close to 100% on dry basis) but reduces the amounts of CO as well. For temperatures below ca. 750K, a level lower than 20ppm (on dry basis) can be reached, thus avoiding the need of a purification stage. Since the reaction of CaO with CO2 is exothermic, the heat is supplied within the reactor. Finally, it was found that the system behavior was strongly dependent on the presence of Ca(OH)2.This four-in-one process can be a way of enhancing the efficiency of the overall system of production-purification of H2. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50065 Wess, Robert J. ; Nores Pondal, Federico Jose; Laborde, Miguel Ángel; Giunta, Pablo Daniel; Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 134; 9-2015; 86-95 0009-2509 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50065 |
identifier_str_mv |
Wess, Robert J. ; Nores Pondal, Federico Jose; Laborde, Miguel Ángel; Giunta, Pablo Daniel; Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 134; 9-2015; 86-95 0009-2509 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2015.04.002 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009250915002407 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613292233850880 |
score |
13.070432 |