Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion
- Autores
- Goloboff, Pablo Augusto; Arias Becerra, Joan Salvador
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T?3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists.
Fil: Goloboff, Pablo Augusto. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Arias Becerra, Joan Salvador. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
no
keywords
available - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/140153
Ver los metadatos del registro completo
| id |
CONICETDig_b231f982ed3c1cae40a2578453d62339 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/140153 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterionGoloboff, Pablo AugustoArias Becerra, Joan Salvadornokeywordsavailablehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T?3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists.Fil: Goloboff, Pablo Augusto. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arias Becerra, Joan Salvador. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley Blackwell Publishing, Inc2019-03-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140153Goloboff, Pablo Augusto; Arias Becerra, Joan Salvador; Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion; Wiley Blackwell Publishing, Inc; Cladistics; 35; 6; 25-3-2019; 695-7160748-3007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/cla.12380info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/cla.12380info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:24:09Zoai:ri.conicet.gov.ar:11336/140153instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:24:10.008CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion |
| title |
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion |
| spellingShingle |
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion Goloboff, Pablo Augusto no keywords available |
| title_short |
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion |
| title_full |
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion |
| title_fullStr |
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion |
| title_full_unstemmed |
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion |
| title_sort |
Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion |
| dc.creator.none.fl_str_mv |
Goloboff, Pablo Augusto Arias Becerra, Joan Salvador |
| author |
Goloboff, Pablo Augusto |
| author_facet |
Goloboff, Pablo Augusto Arias Becerra, Joan Salvador |
| author_role |
author |
| author2 |
Arias Becerra, Joan Salvador |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
no keywords available |
| topic |
no keywords available |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T?3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists. Fil: Goloboff, Pablo Augusto. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Arias Becerra, Joan Salvador. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T?3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-03-25 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/140153 Goloboff, Pablo Augusto; Arias Becerra, Joan Salvador; Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion; Wiley Blackwell Publishing, Inc; Cladistics; 35; 6; 25-3-2019; 695-716 0748-3007 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/140153 |
| identifier_str_mv |
Goloboff, Pablo Augusto; Arias Becerra, Joan Salvador; Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion; Wiley Blackwell Publishing, Inc; Cladistics; 35; 6; 25-3-2019; 695-716 0748-3007 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/cla.12380 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/cla.12380 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781777428873216 |
| score |
12.982451 |