Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion

Autores
Goloboff, Pablo Augusto; Arias Becerra, Joan Salvador
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T?3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists.
Fil: Goloboff, Pablo Augusto. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Arias Becerra, Joan Salvador. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
no
keywords
available
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/140153

id CONICETDig_b231f982ed3c1cae40a2578453d62339
oai_identifier_str oai:ri.conicet.gov.ar:11336/140153
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterionGoloboff, Pablo AugustoArias Becerra, Joan Salvadornokeywordsavailablehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T?3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists.Fil: Goloboff, Pablo Augusto. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arias Becerra, Joan Salvador. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley Blackwell Publishing, Inc2019-03-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140153Goloboff, Pablo Augusto; Arias Becerra, Joan Salvador; Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion; Wiley Blackwell Publishing, Inc; Cladistics; 35; 6; 25-3-2019; 695-7160748-3007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/cla.12380info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/cla.12380info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:24:09Zoai:ri.conicet.gov.ar:11336/140153instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:24:10.008CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion
title Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion
spellingShingle Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion
Goloboff, Pablo Augusto
no
keywords
available
title_short Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion
title_full Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion
title_fullStr Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion
title_full_unstemmed Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion
title_sort Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion
dc.creator.none.fl_str_mv Goloboff, Pablo Augusto
Arias Becerra, Joan Salvador
author Goloboff, Pablo Augusto
author_facet Goloboff, Pablo Augusto
Arias Becerra, Joan Salvador
author_role author
author2 Arias Becerra, Joan Salvador
author2_role author
dc.subject.none.fl_str_mv no
keywords
available
topic no
keywords
available
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T?3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists.
Fil: Goloboff, Pablo Augusto. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Arias Becerra, Joan Salvador. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T?3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/140153
Goloboff, Pablo Augusto; Arias Becerra, Joan Salvador; Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion; Wiley Blackwell Publishing, Inc; Cladistics; 35; 6; 25-3-2019; 695-716
0748-3007
CONICET Digital
CONICET
url http://hdl.handle.net/11336/140153
identifier_str_mv Goloboff, Pablo Augusto; Arias Becerra, Joan Salvador; Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion; Wiley Blackwell Publishing, Inc; Cladistics; 35; 6; 25-3-2019; 695-716
0748-3007
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/cla.12380
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/cla.12380
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781777428873216
score 12.982451