The stability of hollow nanoparticles and the simulation temperature ramp

Autores
Reyes, Paula N.; Valencia, Felipe J.; Vega, Hector; Ruestes, Carlos Javier; Rogan, José; Valdivia, J. A.; Kiwi, Miguel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter.
Fil: Reyes, Paula N.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Valencia, Felipe J.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad Mayor; Chile
Fil: Vega, Hector. Universidad de Chile; Chile
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rogan, José. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Valdivia, J. A.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Materia
sin keywords
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96259

id CONICETDig_ab7ad565892a9c64205f91e157f32747
oai_identifier_str oai:ri.conicet.gov.ar:11336/96259
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The stability of hollow nanoparticles and the simulation temperature rampReyes, Paula N.Valencia, Felipe J.Vega, HectorRuestes, Carlos JavierRogan, JoséValdivia, J. A.Kiwi, Miguelsin keywordshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter.Fil: Reyes, Paula N.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: Valencia, Felipe J.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad Mayor; ChileFil: Vega, Hector. Universidad de Chile; ChileFil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rogan, José. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: Valdivia, J. A.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileRoyal Society of Chemistry2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96259Reyes, Paula N.; Valencia, Felipe J.; Vega, Hector; Ruestes, Carlos Javier; Rogan, José; et al.; The stability of hollow nanoparticles and the simulation temperature ramp; Royal Society of Chemistry; Inorganic Chemistry Frontiers; 5; 5; 5-2018; 1139-11442052-1553CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C7QI00822Hinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2018/QI/C7QI00822Hinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:14Zoai:ri.conicet.gov.ar:11336/96259instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:15.21CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The stability of hollow nanoparticles and the simulation temperature ramp
title The stability of hollow nanoparticles and the simulation temperature ramp
spellingShingle The stability of hollow nanoparticles and the simulation temperature ramp
Reyes, Paula N.
sin keywords
title_short The stability of hollow nanoparticles and the simulation temperature ramp
title_full The stability of hollow nanoparticles and the simulation temperature ramp
title_fullStr The stability of hollow nanoparticles and the simulation temperature ramp
title_full_unstemmed The stability of hollow nanoparticles and the simulation temperature ramp
title_sort The stability of hollow nanoparticles and the simulation temperature ramp
dc.creator.none.fl_str_mv Reyes, Paula N.
Valencia, Felipe J.
Vega, Hector
Ruestes, Carlos Javier
Rogan, José
Valdivia, J. A.
Kiwi, Miguel
author Reyes, Paula N.
author_facet Reyes, Paula N.
Valencia, Felipe J.
Vega, Hector
Ruestes, Carlos Javier
Rogan, José
Valdivia, J. A.
Kiwi, Miguel
author_role author
author2 Valencia, Felipe J.
Vega, Hector
Ruestes, Carlos Javier
Rogan, José
Valdivia, J. A.
Kiwi, Miguel
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv sin keywords
topic sin keywords
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter.
Fil: Reyes, Paula N.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Valencia, Felipe J.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad Mayor; Chile
Fil: Vega, Hector. Universidad de Chile; Chile
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rogan, José. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Valdivia, J. A.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
description Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96259
Reyes, Paula N.; Valencia, Felipe J.; Vega, Hector; Ruestes, Carlos Javier; Rogan, José; et al.; The stability of hollow nanoparticles and the simulation temperature ramp; Royal Society of Chemistry; Inorganic Chemistry Frontiers; 5; 5; 5-2018; 1139-1144
2052-1553
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96259
identifier_str_mv Reyes, Paula N.; Valencia, Felipe J.; Vega, Hector; Ruestes, Carlos Javier; Rogan, José; et al.; The stability of hollow nanoparticles and the simulation temperature ramp; Royal Society of Chemistry; Inorganic Chemistry Frontiers; 5; 5; 5-2018; 1139-1144
2052-1553
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/C7QI00822H
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2018/QI/C7QI00822H
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781261080690688
score 12.982451