The stability of hollow nanoparticles and the simulation temperature ramp
- Autores
- Reyes, Paula N.; Valencia, Felipe J.; Vega, Hector; Ruestes, Carlos Javier; Rogan, José; Valdivia, J. A.; Kiwi, Miguel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter.
Fil: Reyes, Paula N.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Valencia, Felipe J.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad Mayor; Chile
Fil: Vega, Hector. Universidad de Chile; Chile
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rogan, José. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Valdivia, J. A.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile - Materia
- sin keywords
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96259
Ver los metadatos del registro completo
| id |
CONICETDig_ab7ad565892a9c64205f91e157f32747 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96259 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The stability of hollow nanoparticles and the simulation temperature rampReyes, Paula N.Valencia, Felipe J.Vega, HectorRuestes, Carlos JavierRogan, JoséValdivia, J. A.Kiwi, Miguelsin keywordshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter.Fil: Reyes, Paula N.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: Valencia, Felipe J.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad Mayor; ChileFil: Vega, Hector. Universidad de Chile; ChileFil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rogan, José. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: Valdivia, J. A.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileRoyal Society of Chemistry2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96259Reyes, Paula N.; Valencia, Felipe J.; Vega, Hector; Ruestes, Carlos Javier; Rogan, José; et al.; The stability of hollow nanoparticles and the simulation temperature ramp; Royal Society of Chemistry; Inorganic Chemistry Frontiers; 5; 5; 5-2018; 1139-11442052-1553CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C7QI00822Hinfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2018/QI/C7QI00822Hinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:14Zoai:ri.conicet.gov.ar:11336/96259instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:15.21CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The stability of hollow nanoparticles and the simulation temperature ramp |
| title |
The stability of hollow nanoparticles and the simulation temperature ramp |
| spellingShingle |
The stability of hollow nanoparticles and the simulation temperature ramp Reyes, Paula N. sin keywords |
| title_short |
The stability of hollow nanoparticles and the simulation temperature ramp |
| title_full |
The stability of hollow nanoparticles and the simulation temperature ramp |
| title_fullStr |
The stability of hollow nanoparticles and the simulation temperature ramp |
| title_full_unstemmed |
The stability of hollow nanoparticles and the simulation temperature ramp |
| title_sort |
The stability of hollow nanoparticles and the simulation temperature ramp |
| dc.creator.none.fl_str_mv |
Reyes, Paula N. Valencia, Felipe J. Vega, Hector Ruestes, Carlos Javier Rogan, José Valdivia, J. A. Kiwi, Miguel |
| author |
Reyes, Paula N. |
| author_facet |
Reyes, Paula N. Valencia, Felipe J. Vega, Hector Ruestes, Carlos Javier Rogan, José Valdivia, J. A. Kiwi, Miguel |
| author_role |
author |
| author2 |
Valencia, Felipe J. Vega, Hector Ruestes, Carlos Javier Rogan, José Valdivia, J. A. Kiwi, Miguel |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
sin keywords |
| topic |
sin keywords |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter. Fil: Reyes, Paula N.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile Fil: Valencia, Felipe J.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad Mayor; Chile Fil: Vega, Hector. Universidad de Chile; Chile Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rogan, José. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile Fil: Valdivia, J. A.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile Fil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile |
| description |
Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96259 Reyes, Paula N.; Valencia, Felipe J.; Vega, Hector; Ruestes, Carlos Javier; Rogan, José; et al.; The stability of hollow nanoparticles and the simulation temperature ramp; Royal Society of Chemistry; Inorganic Chemistry Frontiers; 5; 5; 5-2018; 1139-1144 2052-1553 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/96259 |
| identifier_str_mv |
Reyes, Paula N.; Valencia, Felipe J.; Vega, Hector; Ruestes, Carlos Javier; Rogan, José; et al.; The stability of hollow nanoparticles and the simulation temperature ramp; Royal Society of Chemistry; Inorganic Chemistry Frontiers; 5; 5; 5-2018; 1139-1144 2052-1553 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/C7QI00822H info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2018/QI/C7QI00822H |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
| publisher.none.fl_str_mv |
Royal Society of Chemistry |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781261080690688 |
| score |
12.982451 |