High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires

Autores
Brandaleze, Elena; Romanyuk, Mykhaylo; Barrirero, Jenifer; Mücklich, Frank; Schell, Norbert; Brokmeier, Heinz Günter; Avalos, Martina Cecilia; Bolmaro, Raul Eduardo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Pearlitic steel wires subjected to severe cold drawing deformation exhibit a unique combination of high strength and excellent ductility, making them suitable for critical applications such as hanging bridge cables, crane cables and tire cord. Torsion tests up to rupture are commonly used in the industry for quality control purposes. A flat fracture surface is indicative of wire aptitude, while a delaminated surface suggests degradation of mechanical properties. This paper aims to expand the understanding of the structural evolution and deformation mechanisms that occur during wire drawing, as well as the origin of delamination problems. Different deformation and strengthening mechanisms are identified and discussed, applying different microscopy techniques (optical microscopy, scanning electron microscopy, electron backscatter diffraction), synchrotron diffraction and atom probe tomography. The information is correlated with the cementite stability on the structure studied at meso, nano, and atomic scale, reaching an understanding of the compositional evolution of cementite and ferrite even at the very lowest level. All the obtained information, including thermal analysis and thermodynamic simulation results, allow to identify the deformation mechanisms present during cold drawing and at the delamination process. In addition, the compositional evolution of cementite and ferrite is also clarified by atom probe tomography.
Fil: Brandaleze, Elena. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina
Fil: Romanyuk, Mykhaylo. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina
Fil: Barrirero, Jenifer. Universitat Saarland; Alemania
Fil: Mücklich, Frank. Universitat Saarland; Alemania
Fil: Schell, Norbert. Helmholtz Gemeinschaft; Alemania
Fil: Brokmeier, Heinz Günter. Helmholtz Gemeinschaft; Alemania
Fil: Avalos, Martina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Bolmaro, Raul Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Materia
delamination mechanisms
pearlitic steel
wires
high deformation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/272442

id CONICETDig_b1f8a66b2cae4fcb664149b348c3d9e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/272442
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wiresBrandaleze, ElenaRomanyuk, MykhayloBarrirero, JeniferMücklich, FrankSchell, NorbertBrokmeier, Heinz GünterAvalos, Martina CeciliaBolmaro, Raul Eduardodelamination mechanismspearlitic steelwireshigh deformationhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Pearlitic steel wires subjected to severe cold drawing deformation exhibit a unique combination of high strength and excellent ductility, making them suitable for critical applications such as hanging bridge cables, crane cables and tire cord. Torsion tests up to rupture are commonly used in the industry for quality control purposes. A flat fracture surface is indicative of wire aptitude, while a delaminated surface suggests degradation of mechanical properties. This paper aims to expand the understanding of the structural evolution and deformation mechanisms that occur during wire drawing, as well as the origin of delamination problems. Different deformation and strengthening mechanisms are identified and discussed, applying different microscopy techniques (optical microscopy, scanning electron microscopy, electron backscatter diffraction), synchrotron diffraction and atom probe tomography. The information is correlated with the cementite stability on the structure studied at meso, nano, and atomic scale, reaching an understanding of the compositional evolution of cementite and ferrite even at the very lowest level. All the obtained information, including thermal analysis and thermodynamic simulation results, allow to identify the deformation mechanisms present during cold drawing and at the delamination process. In addition, the compositional evolution of cementite and ferrite is also clarified by atom probe tomography.Fil: Brandaleze, Elena. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; ArgentinaFil: Romanyuk, Mykhaylo. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; ArgentinaFil: Barrirero, Jenifer. Universitat Saarland; AlemaniaFil: Mücklich, Frank. Universitat Saarland; AlemaniaFil: Schell, Norbert. Helmholtz Gemeinschaft; AlemaniaFil: Brokmeier, Heinz Günter. Helmholtz Gemeinschaft; AlemaniaFil: Avalos, Martina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Bolmaro, Raul Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaEDP Sciences2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272442Brandaleze, Elena; Romanyuk, Mykhaylo; Barrirero, Jenifer; Mücklich, Frank; Schell, Norbert; et al.; High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires; EDP Sciences; Metallurgical Research & Technology; 121; 1; 1-2024; 111-1272271-3654CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.metallurgical-research.org/10.1051/metal/2023089info:eu-repo/semantics/altIdentifier/doi/10.1051/metal/2023089info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:58:46Zoai:ri.conicet.gov.ar:11336/272442instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:46.737CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires
title High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires
spellingShingle High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires
Brandaleze, Elena
delamination mechanisms
pearlitic steel
wires
high deformation
title_short High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires
title_full High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires
title_fullStr High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires
title_full_unstemmed High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires
title_sort High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires
dc.creator.none.fl_str_mv Brandaleze, Elena
Romanyuk, Mykhaylo
Barrirero, Jenifer
Mücklich, Frank
Schell, Norbert
Brokmeier, Heinz Günter
Avalos, Martina Cecilia
Bolmaro, Raul Eduardo
author Brandaleze, Elena
author_facet Brandaleze, Elena
Romanyuk, Mykhaylo
Barrirero, Jenifer
Mücklich, Frank
Schell, Norbert
Brokmeier, Heinz Günter
Avalos, Martina Cecilia
Bolmaro, Raul Eduardo
author_role author
author2 Romanyuk, Mykhaylo
Barrirero, Jenifer
Mücklich, Frank
Schell, Norbert
Brokmeier, Heinz Günter
Avalos, Martina Cecilia
Bolmaro, Raul Eduardo
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv delamination mechanisms
pearlitic steel
wires
high deformation
topic delamination mechanisms
pearlitic steel
wires
high deformation
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Pearlitic steel wires subjected to severe cold drawing deformation exhibit a unique combination of high strength and excellent ductility, making them suitable for critical applications such as hanging bridge cables, crane cables and tire cord. Torsion tests up to rupture are commonly used in the industry for quality control purposes. A flat fracture surface is indicative of wire aptitude, while a delaminated surface suggests degradation of mechanical properties. This paper aims to expand the understanding of the structural evolution and deformation mechanisms that occur during wire drawing, as well as the origin of delamination problems. Different deformation and strengthening mechanisms are identified and discussed, applying different microscopy techniques (optical microscopy, scanning electron microscopy, electron backscatter diffraction), synchrotron diffraction and atom probe tomography. The information is correlated with the cementite stability on the structure studied at meso, nano, and atomic scale, reaching an understanding of the compositional evolution of cementite and ferrite even at the very lowest level. All the obtained information, including thermal analysis and thermodynamic simulation results, allow to identify the deformation mechanisms present during cold drawing and at the delamination process. In addition, the compositional evolution of cementite and ferrite is also clarified by atom probe tomography.
Fil: Brandaleze, Elena. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina
Fil: Romanyuk, Mykhaylo. Universidad Tecnológica Nacional. Facultad Regional San Nicolás; Argentina
Fil: Barrirero, Jenifer. Universitat Saarland; Alemania
Fil: Mücklich, Frank. Universitat Saarland; Alemania
Fil: Schell, Norbert. Helmholtz Gemeinschaft; Alemania
Fil: Brokmeier, Heinz Günter. Helmholtz Gemeinschaft; Alemania
Fil: Avalos, Martina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Bolmaro, Raul Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
description Pearlitic steel wires subjected to severe cold drawing deformation exhibit a unique combination of high strength and excellent ductility, making them suitable for critical applications such as hanging bridge cables, crane cables and tire cord. Torsion tests up to rupture are commonly used in the industry for quality control purposes. A flat fracture surface is indicative of wire aptitude, while a delaminated surface suggests degradation of mechanical properties. This paper aims to expand the understanding of the structural evolution and deformation mechanisms that occur during wire drawing, as well as the origin of delamination problems. Different deformation and strengthening mechanisms are identified and discussed, applying different microscopy techniques (optical microscopy, scanning electron microscopy, electron backscatter diffraction), synchrotron diffraction and atom probe tomography. The information is correlated with the cementite stability on the structure studied at meso, nano, and atomic scale, reaching an understanding of the compositional evolution of cementite and ferrite even at the very lowest level. All the obtained information, including thermal analysis and thermodynamic simulation results, allow to identify the deformation mechanisms present during cold drawing and at the delamination process. In addition, the compositional evolution of cementite and ferrite is also clarified by atom probe tomography.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/272442
Brandaleze, Elena; Romanyuk, Mykhaylo; Barrirero, Jenifer; Mücklich, Frank; Schell, Norbert; et al.; High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires; EDP Sciences; Metallurgical Research & Technology; 121; 1; 1-2024; 111-127
2271-3654
CONICET Digital
CONICET
url http://hdl.handle.net/11336/272442
identifier_str_mv Brandaleze, Elena; Romanyuk, Mykhaylo; Barrirero, Jenifer; Mücklich, Frank; Schell, Norbert; et al.; High deformation and delamination mechanisms explained through mesoscale and nanoscale phenomena in pearlitic steel wires; EDP Sciences; Metallurgical Research & Technology; 121; 1; 1-2024; 111-127
2271-3654
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.metallurgical-research.org/10.1051/metal/2023089
info:eu-repo/semantics/altIdentifier/doi/10.1051/metal/2023089
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083128761778176
score 13.22299