Short-term stability of particles in the WD J0914+1914 white dwarf planetary system

Autores
Zotos, Euaggelos E.; Veras, Dimitri; Saeed, Tareq; Darriba, Luciano Ariel
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nearly all known white dwarf planetary systems contain detectable rocky debris in the stellar photosphere. A glaring exception is the young and still evolving white dwarf WD J0914+1914, which instead harbours a giant planet and a disc of pure gas. The stability boundaries of this disc and the future prospects for this white dwarf to be polluted with rocks depend upon the mass and orbit of the planet, which are only weakly constrained. Here, we combine an ensemble of plausible planet orbits and masses to determine where observers should currently expect to find the outer boundary of the gas disc. We do so by performing a sweep of the entire plausible phase space with short-term numerical integrations. We also demonstrate that particle-star collisional trajectories, which would lead to the (unseen) signature of rocky metal pollution, occupy only a small fraction of the phasespace, mostly limited to particle eccentricities above 0.75. Our analysis reveals that a highly inflated planet on a near-circular orbit is the type of planet which is most consistent with the current observations.
Fil: Zotos, Euaggelos E.. Aristotle University Of Thessaloniki; Grecia
Fil: Veras, Dimitri. Centre For Exoplanets And Habitability, U. Of Warwick; Reino Unido
Fil: Saeed, Tareq. Faculty Of Science, King Abdulaziz University; Arabia Saudita
Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Materia
planets and satellites: dynamical evolution and stability
planet-star interactions: protoplanetary discs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/142049

id CONICETDig_b1a7b3dcc811c7eaf433d0823cc33463
oai_identifier_str oai:ri.conicet.gov.ar:11336/142049
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Short-term stability of particles in the WD J0914+1914 white dwarf planetary systemZotos, Euaggelos E.Veras, DimitriSaeed, TareqDarriba, Luciano Arielplanets and satellites: dynamical evolution and stabilityplanet-star interactions: protoplanetary discshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nearly all known white dwarf planetary systems contain detectable rocky debris in the stellar photosphere. A glaring exception is the young and still evolving white dwarf WD J0914+1914, which instead harbours a giant planet and a disc of pure gas. The stability boundaries of this disc and the future prospects for this white dwarf to be polluted with rocks depend upon the mass and orbit of the planet, which are only weakly constrained. Here, we combine an ensemble of plausible planet orbits and masses to determine where observers should currently expect to find the outer boundary of the gas disc. We do so by performing a sweep of the entire plausible phase space with short-term numerical integrations. We also demonstrate that particle-star collisional trajectories, which would lead to the (unseen) signature of rocky metal pollution, occupy only a small fraction of the phasespace, mostly limited to particle eccentricities above 0.75. Our analysis reveals that a highly inflated planet on a near-circular orbit is the type of planet which is most consistent with the current observations.Fil: Zotos, Euaggelos E.. Aristotle University Of Thessaloniki; GreciaFil: Veras, Dimitri. Centre For Exoplanets And Habitability, U. Of Warwick; Reino UnidoFil: Saeed, Tareq. Faculty Of Science, King Abdulaziz University; Arabia SauditaFil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaWiley Blackwell Publishing, Inc2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142049Zotos, Euaggelos E.; Veras, Dimitri; Saeed, Tareq; Darriba, Luciano Ariel; Short-term stability of particles in the WD J0914+1914 white dwarf planetary system; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 497; 4; 10-2020; 5171-51810035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/497/4/5171/5881982info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/staa2309info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:51Zoai:ri.conicet.gov.ar:11336/142049instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:51.899CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Short-term stability of particles in the WD J0914+1914 white dwarf planetary system
title Short-term stability of particles in the WD J0914+1914 white dwarf planetary system
spellingShingle Short-term stability of particles in the WD J0914+1914 white dwarf planetary system
Zotos, Euaggelos E.
planets and satellites: dynamical evolution and stability
planet-star interactions: protoplanetary discs
title_short Short-term stability of particles in the WD J0914+1914 white dwarf planetary system
title_full Short-term stability of particles in the WD J0914+1914 white dwarf planetary system
title_fullStr Short-term stability of particles in the WD J0914+1914 white dwarf planetary system
title_full_unstemmed Short-term stability of particles in the WD J0914+1914 white dwarf planetary system
title_sort Short-term stability of particles in the WD J0914+1914 white dwarf planetary system
dc.creator.none.fl_str_mv Zotos, Euaggelos E.
Veras, Dimitri
Saeed, Tareq
Darriba, Luciano Ariel
author Zotos, Euaggelos E.
author_facet Zotos, Euaggelos E.
Veras, Dimitri
Saeed, Tareq
Darriba, Luciano Ariel
author_role author
author2 Veras, Dimitri
Saeed, Tareq
Darriba, Luciano Ariel
author2_role author
author
author
dc.subject.none.fl_str_mv planets and satellites: dynamical evolution and stability
planet-star interactions: protoplanetary discs
topic planets and satellites: dynamical evolution and stability
planet-star interactions: protoplanetary discs
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nearly all known white dwarf planetary systems contain detectable rocky debris in the stellar photosphere. A glaring exception is the young and still evolving white dwarf WD J0914+1914, which instead harbours a giant planet and a disc of pure gas. The stability boundaries of this disc and the future prospects for this white dwarf to be polluted with rocks depend upon the mass and orbit of the planet, which are only weakly constrained. Here, we combine an ensemble of plausible planet orbits and masses to determine where observers should currently expect to find the outer boundary of the gas disc. We do so by performing a sweep of the entire plausible phase space with short-term numerical integrations. We also demonstrate that particle-star collisional trajectories, which would lead to the (unseen) signature of rocky metal pollution, occupy only a small fraction of the phasespace, mostly limited to particle eccentricities above 0.75. Our analysis reveals that a highly inflated planet on a near-circular orbit is the type of planet which is most consistent with the current observations.
Fil: Zotos, Euaggelos E.. Aristotle University Of Thessaloniki; Grecia
Fil: Veras, Dimitri. Centre For Exoplanets And Habitability, U. Of Warwick; Reino Unido
Fil: Saeed, Tareq. Faculty Of Science, King Abdulaziz University; Arabia Saudita
Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
description Nearly all known white dwarf planetary systems contain detectable rocky debris in the stellar photosphere. A glaring exception is the young and still evolving white dwarf WD J0914+1914, which instead harbours a giant planet and a disc of pure gas. The stability boundaries of this disc and the future prospects for this white dwarf to be polluted with rocks depend upon the mass and orbit of the planet, which are only weakly constrained. Here, we combine an ensemble of plausible planet orbits and masses to determine where observers should currently expect to find the outer boundary of the gas disc. We do so by performing a sweep of the entire plausible phase space with short-term numerical integrations. We also demonstrate that particle-star collisional trajectories, which would lead to the (unseen) signature of rocky metal pollution, occupy only a small fraction of the phasespace, mostly limited to particle eccentricities above 0.75. Our analysis reveals that a highly inflated planet on a near-circular orbit is the type of planet which is most consistent with the current observations.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/142049
Zotos, Euaggelos E.; Veras, Dimitri; Saeed, Tareq; Darriba, Luciano Ariel; Short-term stability of particles in the WD J0914+1914 white dwarf planetary system; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 497; 4; 10-2020; 5171-5181
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/142049
identifier_str_mv Zotos, Euaggelos E.; Veras, Dimitri; Saeed, Tareq; Darriba, Luciano Ariel; Short-term stability of particles in the WD J0914+1914 white dwarf planetary system; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 497; 4; 10-2020; 5171-5181
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/497/4/5171/5881982
info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/staa2309
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614437668913152
score 13.070432