Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass
- Autores
- Ronco, María Paula; Schreiber, Matthias R.; Villaver, E.; Guilera, Octavio Miguel; Miller Bertolami, Marcelo Miguel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. The study of protoplanetary disc evolution and theories of planet formation has predominantly concentrated on solar- (and low-) mass stars since they host the majority of confirmed exoplanets. Nevertheless, the confirmation of numerous planets orbiting stars more massive than the Sun (up to ∼ 3 Msun) has sparked considerable interest in understanding the mechanisms involved in their formation, and thus in the evolution of their hosting protoplanetary discs. Aims. We aim to improve our knowledge of the evolution of the gaseous component of protoplanetary discs around intermediate-mass stars and to set the stage for future studies of planet formation around them. Methods. We study the long-term evolution of protoplanetary discs affected by viscous accretion and photoevaporation by X-ray and far-ultraviolet (FUV) photons from the central star around stars in the range of 1 - 3Msun, considering the effects of stellar evolution and solving the vertical structure equations of the disc. We explore the effect of different values of the viscosity parameter and the initial mass of the disc.Results. We find that the evolutionary pathway of protoplanetary disc dispersal due to photoevaporation depends on the stellar mass. Our simulations reveal four distinct evolutionary pathways for the gas component not reported before that are a consequence of stellarevolution and that likely have a substantial impact on the dust evolution, and thus on planet formation. As the stellar mass increases from one solar mass to ∼1.5 - 2Msun, the evolution of the disc changes from the conventional inside-out clearing, in which X-ray photoevaporation generates inner holes, to a homogeneous disc evolution scenario where both inner and outer discs formed after a gap is opened by photoevaporation vanish over a similar timescale. As the stellar mass continues to increase, reaching ∼2 - 3Msun, we identify a distinct pathway that we refer to as revenant disc evolution. In this scenario, the inner and outer discs reconnect after the gap opened. For the largest masses, we observe outside-in disc dispersal, in which the outer disc dissipates first due to a stronger FUV photoevaporation rate. Revenant disc evolution stands out as it is capable of extending the disc lifespan. Otherwise, the disc dispersal timescale decreases with increasing stellar mass except for low-viscosity discs.
Fil: Ronco, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Schreiber, Matthias R.. Universidad Técnica Federico Santa María; Chile
Fil: Villaver, E.. Agencia Espacial Española; España
Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Miller Bertolami, Marcelo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina - Materia
-
Protoplanetary discs
Stars: evolution
Planets and satellites: formation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/235927
Ver los metadatos del registro completo
id |
CONICETDig_6b26ee01c89a1bc0819f7d61d1b72445 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/235927 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar massRonco, María PaulaSchreiber, Matthias R.Villaver, E.Guilera, Octavio MiguelMiller Bertolami, Marcelo MiguelProtoplanetary discsStars: evolutionPlanets and satellites: formationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. The study of protoplanetary disc evolution and theories of planet formation has predominantly concentrated on solar- (and low-) mass stars since they host the majority of confirmed exoplanets. Nevertheless, the confirmation of numerous planets orbiting stars more massive than the Sun (up to ∼ 3 Msun) has sparked considerable interest in understanding the mechanisms involved in their formation, and thus in the evolution of their hosting protoplanetary discs. Aims. We aim to improve our knowledge of the evolution of the gaseous component of protoplanetary discs around intermediate-mass stars and to set the stage for future studies of planet formation around them. Methods. We study the long-term evolution of protoplanetary discs affected by viscous accretion and photoevaporation by X-ray and far-ultraviolet (FUV) photons from the central star around stars in the range of 1 - 3Msun, considering the effects of stellar evolution and solving the vertical structure equations of the disc. We explore the effect of different values of the viscosity parameter and the initial mass of the disc.Results. We find that the evolutionary pathway of protoplanetary disc dispersal due to photoevaporation depends on the stellar mass. Our simulations reveal four distinct evolutionary pathways for the gas component not reported before that are a consequence of stellarevolution and that likely have a substantial impact on the dust evolution, and thus on planet formation. As the stellar mass increases from one solar mass to ∼1.5 - 2Msun, the evolution of the disc changes from the conventional inside-out clearing, in which X-ray photoevaporation generates inner holes, to a homogeneous disc evolution scenario where both inner and outer discs formed after a gap is opened by photoevaporation vanish over a similar timescale. As the stellar mass continues to increase, reaching ∼2 - 3Msun, we identify a distinct pathway that we refer to as revenant disc evolution. In this scenario, the inner and outer discs reconnect after the gap opened. For the largest masses, we observe outside-in disc dispersal, in which the outer disc dissipates first due to a stronger FUV photoevaporation rate. Revenant disc evolution stands out as it is capable of extending the disc lifespan. Otherwise, the disc dispersal timescale decreases with increasing stellar mass except for low-viscosity discs.Fil: Ronco, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Schreiber, Matthias R.. Universidad Técnica Federico Santa María; ChileFil: Villaver, E.. Agencia Espacial Española; EspañaFil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Miller Bertolami, Marcelo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaEDP Sciences2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235927Ronco, María Paula; Schreiber, Matthias R.; Villaver, E.; Guilera, Octavio Miguel; Miller Bertolami, Marcelo Miguel; Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass; EDP Sciences; Astronomy and Astrophysics; 682; A155; 12-2023; 1-190004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202347762info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202347762info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:51Zoai:ri.conicet.gov.ar:11336/235927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:51.469CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass |
title |
Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass |
spellingShingle |
Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass Ronco, María Paula Protoplanetary discs Stars: evolution Planets and satellites: formation |
title_short |
Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass |
title_full |
Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass |
title_fullStr |
Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass |
title_full_unstemmed |
Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass |
title_sort |
Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass |
dc.creator.none.fl_str_mv |
Ronco, María Paula Schreiber, Matthias R. Villaver, E. Guilera, Octavio Miguel Miller Bertolami, Marcelo Miguel |
author |
Ronco, María Paula |
author_facet |
Ronco, María Paula Schreiber, Matthias R. Villaver, E. Guilera, Octavio Miguel Miller Bertolami, Marcelo Miguel |
author_role |
author |
author2 |
Schreiber, Matthias R. Villaver, E. Guilera, Octavio Miguel Miller Bertolami, Marcelo Miguel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Protoplanetary discs Stars: evolution Planets and satellites: formation |
topic |
Protoplanetary discs Stars: evolution Planets and satellites: formation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Context. The study of protoplanetary disc evolution and theories of planet formation has predominantly concentrated on solar- (and low-) mass stars since they host the majority of confirmed exoplanets. Nevertheless, the confirmation of numerous planets orbiting stars more massive than the Sun (up to ∼ 3 Msun) has sparked considerable interest in understanding the mechanisms involved in their formation, and thus in the evolution of their hosting protoplanetary discs. Aims. We aim to improve our knowledge of the evolution of the gaseous component of protoplanetary discs around intermediate-mass stars and to set the stage for future studies of planet formation around them. Methods. We study the long-term evolution of protoplanetary discs affected by viscous accretion and photoevaporation by X-ray and far-ultraviolet (FUV) photons from the central star around stars in the range of 1 - 3Msun, considering the effects of stellar evolution and solving the vertical structure equations of the disc. We explore the effect of different values of the viscosity parameter and the initial mass of the disc.Results. We find that the evolutionary pathway of protoplanetary disc dispersal due to photoevaporation depends on the stellar mass. Our simulations reveal four distinct evolutionary pathways for the gas component not reported before that are a consequence of stellarevolution and that likely have a substantial impact on the dust evolution, and thus on planet formation. As the stellar mass increases from one solar mass to ∼1.5 - 2Msun, the evolution of the disc changes from the conventional inside-out clearing, in which X-ray photoevaporation generates inner holes, to a homogeneous disc evolution scenario where both inner and outer discs formed after a gap is opened by photoevaporation vanish over a similar timescale. As the stellar mass continues to increase, reaching ∼2 - 3Msun, we identify a distinct pathway that we refer to as revenant disc evolution. In this scenario, the inner and outer discs reconnect after the gap opened. For the largest masses, we observe outside-in disc dispersal, in which the outer disc dissipates first due to a stronger FUV photoevaporation rate. Revenant disc evolution stands out as it is capable of extending the disc lifespan. Otherwise, the disc dispersal timescale decreases with increasing stellar mass except for low-viscosity discs. Fil: Ronco, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Schreiber, Matthias R.. Universidad Técnica Federico Santa María; Chile Fil: Villaver, E.. Agencia Espacial Española; España Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Miller Bertolami, Marcelo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina |
description |
Context. The study of protoplanetary disc evolution and theories of planet formation has predominantly concentrated on solar- (and low-) mass stars since they host the majority of confirmed exoplanets. Nevertheless, the confirmation of numerous planets orbiting stars more massive than the Sun (up to ∼ 3 Msun) has sparked considerable interest in understanding the mechanisms involved in their formation, and thus in the evolution of their hosting protoplanetary discs. Aims. We aim to improve our knowledge of the evolution of the gaseous component of protoplanetary discs around intermediate-mass stars and to set the stage for future studies of planet formation around them. Methods. We study the long-term evolution of protoplanetary discs affected by viscous accretion and photoevaporation by X-ray and far-ultraviolet (FUV) photons from the central star around stars in the range of 1 - 3Msun, considering the effects of stellar evolution and solving the vertical structure equations of the disc. We explore the effect of different values of the viscosity parameter and the initial mass of the disc.Results. We find that the evolutionary pathway of protoplanetary disc dispersal due to photoevaporation depends on the stellar mass. Our simulations reveal four distinct evolutionary pathways for the gas component not reported before that are a consequence of stellarevolution and that likely have a substantial impact on the dust evolution, and thus on planet formation. As the stellar mass increases from one solar mass to ∼1.5 - 2Msun, the evolution of the disc changes from the conventional inside-out clearing, in which X-ray photoevaporation generates inner holes, to a homogeneous disc evolution scenario where both inner and outer discs formed after a gap is opened by photoevaporation vanish over a similar timescale. As the stellar mass continues to increase, reaching ∼2 - 3Msun, we identify a distinct pathway that we refer to as revenant disc evolution. In this scenario, the inner and outer discs reconnect after the gap opened. For the largest masses, we observe outside-in disc dispersal, in which the outer disc dissipates first due to a stronger FUV photoevaporation rate. Revenant disc evolution stands out as it is capable of extending the disc lifespan. Otherwise, the disc dispersal timescale decreases with increasing stellar mass except for low-viscosity discs. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/235927 Ronco, María Paula; Schreiber, Matthias R.; Villaver, E.; Guilera, Octavio Miguel; Miller Bertolami, Marcelo Miguel; Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass; EDP Sciences; Astronomy and Astrophysics; 682; A155; 12-2023; 1-19 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/235927 |
identifier_str_mv |
Ronco, María Paula; Schreiber, Matthias R.; Villaver, E.; Guilera, Octavio Miguel; Miller Bertolami, Marcelo Miguel; Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass; EDP Sciences; Astronomy and Astrophysics; 682; A155; 12-2023; 1-19 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202347762 info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202347762 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614173712973824 |
score |
13.070432 |