Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass

Autores
Ronco, María Paula; Schreiber, Matthias R.; Villaver, E.; Guilera, Octavio Miguel; Miller Bertolami, Marcelo Miguel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. The study of protoplanetary disc evolution and theories of planet formation has predominantly concentrated on solar- (and low-) mass stars since they host the majority of confirmed exoplanets. Nevertheless, the confirmation of numerous planets orbiting stars more massive than the Sun (up to ∼ 3 Msun) has sparked considerable interest in understanding the mechanisms involved in their formation, and thus in the evolution of their hosting protoplanetary discs. Aims. We aim to improve our knowledge of the evolution of the gaseous component of protoplanetary discs around intermediate-mass stars and to set the stage for future studies of planet formation around them. Methods. We study the long-term evolution of protoplanetary discs affected by viscous accretion and photoevaporation by X-ray and far-ultraviolet (FUV) photons from the central star around stars in the range of 1 - 3Msun, considering the effects of stellar evolution and solving the vertical structure equations of the disc. We explore the effect of different values of the viscosity parameter and the initial mass of the disc.Results. We find that the evolutionary pathway of protoplanetary disc dispersal due to photoevaporation depends on the stellar mass. Our simulations reveal four distinct evolutionary pathways for the gas component not reported before that are a consequence of stellarevolution and that likely have a substantial impact on the dust evolution, and thus on planet formation. As the stellar mass increases from one solar mass to ∼1.5 - 2Msun, the evolution of the disc changes from the conventional inside-out clearing, in which X-ray photoevaporation generates inner holes, to a homogeneous disc evolution scenario where both inner and outer discs formed after a gap is opened by photoevaporation vanish over a similar timescale. As the stellar mass continues to increase, reaching ∼2 - 3Msun, we identify a distinct pathway that we refer to as revenant disc evolution. In this scenario, the inner and outer discs reconnect after the gap opened. For the largest masses, we observe outside-in disc dispersal, in which the outer disc dissipates first due to a stronger FUV photoevaporation rate. Revenant disc evolution stands out as it is capable of extending the disc lifespan. Otherwise, the disc dispersal timescale decreases with increasing stellar mass except for low-viscosity discs.
Fil: Ronco, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Schreiber, Matthias R.. Universidad Técnica Federico Santa María; Chile
Fil: Villaver, E.. Agencia Espacial Española; España
Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Miller Bertolami, Marcelo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Materia
Protoplanetary discs
Stars: evolution
Planets and satellites: formation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/235927

id CONICETDig_6b26ee01c89a1bc0819f7d61d1b72445
oai_identifier_str oai:ri.conicet.gov.ar:11336/235927
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar massRonco, María PaulaSchreiber, Matthias R.Villaver, E.Guilera, Octavio MiguelMiller Bertolami, Marcelo MiguelProtoplanetary discsStars: evolutionPlanets and satellites: formationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. The study of protoplanetary disc evolution and theories of planet formation has predominantly concentrated on solar- (and low-) mass stars since they host the majority of confirmed exoplanets. Nevertheless, the confirmation of numerous planets orbiting stars more massive than the Sun (up to ∼ 3 Msun) has sparked considerable interest in understanding the mechanisms involved in their formation, and thus in the evolution of their hosting protoplanetary discs. Aims. We aim to improve our knowledge of the evolution of the gaseous component of protoplanetary discs around intermediate-mass stars and to set the stage for future studies of planet formation around them. Methods. We study the long-term evolution of protoplanetary discs affected by viscous accretion and photoevaporation by X-ray and far-ultraviolet (FUV) photons from the central star around stars in the range of 1 - 3Msun, considering the effects of stellar evolution and solving the vertical structure equations of the disc. We explore the effect of different values of the viscosity parameter and the initial mass of the disc.Results. We find that the evolutionary pathway of protoplanetary disc dispersal due to photoevaporation depends on the stellar mass. Our simulations reveal four distinct evolutionary pathways for the gas component not reported before that are a consequence of stellarevolution and that likely have a substantial impact on the dust evolution, and thus on planet formation. As the stellar mass increases from one solar mass to ∼1.5 - 2Msun, the evolution of the disc changes from the conventional inside-out clearing, in which X-ray photoevaporation generates inner holes, to a homogeneous disc evolution scenario where both inner and outer discs formed after a gap is opened by photoevaporation vanish over a similar timescale. As the stellar mass continues to increase, reaching ∼2 - 3Msun, we identify a distinct pathway that we refer to as revenant disc evolution. In this scenario, the inner and outer discs reconnect after the gap opened. For the largest masses, we observe outside-in disc dispersal, in which the outer disc dissipates first due to a stronger FUV photoevaporation rate. Revenant disc evolution stands out as it is capable of extending the disc lifespan. Otherwise, the disc dispersal timescale decreases with increasing stellar mass except for low-viscosity discs.Fil: Ronco, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Schreiber, Matthias R.. Universidad Técnica Federico Santa María; ChileFil: Villaver, E.. Agencia Espacial Española; EspañaFil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Miller Bertolami, Marcelo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaEDP Sciences2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235927Ronco, María Paula; Schreiber, Matthias R.; Villaver, E.; Guilera, Octavio Miguel; Miller Bertolami, Marcelo Miguel; Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass; EDP Sciences; Astronomy and Astrophysics; 682; A155; 12-2023; 1-190004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202347762info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202347762info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:51Zoai:ri.conicet.gov.ar:11336/235927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:51.469CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass
title Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass
spellingShingle Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass
Ronco, María Paula
Protoplanetary discs
Stars: evolution
Planets and satellites: formation
title_short Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass
title_full Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass
title_fullStr Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass
title_full_unstemmed Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass
title_sort Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass
dc.creator.none.fl_str_mv Ronco, María Paula
Schreiber, Matthias R.
Villaver, E.
Guilera, Octavio Miguel
Miller Bertolami, Marcelo Miguel
author Ronco, María Paula
author_facet Ronco, María Paula
Schreiber, Matthias R.
Villaver, E.
Guilera, Octavio Miguel
Miller Bertolami, Marcelo Miguel
author_role author
author2 Schreiber, Matthias R.
Villaver, E.
Guilera, Octavio Miguel
Miller Bertolami, Marcelo Miguel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Protoplanetary discs
Stars: evolution
Planets and satellites: formation
topic Protoplanetary discs
Stars: evolution
Planets and satellites: formation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. The study of protoplanetary disc evolution and theories of planet formation has predominantly concentrated on solar- (and low-) mass stars since they host the majority of confirmed exoplanets. Nevertheless, the confirmation of numerous planets orbiting stars more massive than the Sun (up to ∼ 3 Msun) has sparked considerable interest in understanding the mechanisms involved in their formation, and thus in the evolution of their hosting protoplanetary discs. Aims. We aim to improve our knowledge of the evolution of the gaseous component of protoplanetary discs around intermediate-mass stars and to set the stage for future studies of planet formation around them. Methods. We study the long-term evolution of protoplanetary discs affected by viscous accretion and photoevaporation by X-ray and far-ultraviolet (FUV) photons from the central star around stars in the range of 1 - 3Msun, considering the effects of stellar evolution and solving the vertical structure equations of the disc. We explore the effect of different values of the viscosity parameter and the initial mass of the disc.Results. We find that the evolutionary pathway of protoplanetary disc dispersal due to photoevaporation depends on the stellar mass. Our simulations reveal four distinct evolutionary pathways for the gas component not reported before that are a consequence of stellarevolution and that likely have a substantial impact on the dust evolution, and thus on planet formation. As the stellar mass increases from one solar mass to ∼1.5 - 2Msun, the evolution of the disc changes from the conventional inside-out clearing, in which X-ray photoevaporation generates inner holes, to a homogeneous disc evolution scenario where both inner and outer discs formed after a gap is opened by photoevaporation vanish over a similar timescale. As the stellar mass continues to increase, reaching ∼2 - 3Msun, we identify a distinct pathway that we refer to as revenant disc evolution. In this scenario, the inner and outer discs reconnect after the gap opened. For the largest masses, we observe outside-in disc dispersal, in which the outer disc dissipates first due to a stronger FUV photoevaporation rate. Revenant disc evolution stands out as it is capable of extending the disc lifespan. Otherwise, the disc dispersal timescale decreases with increasing stellar mass except for low-viscosity discs.
Fil: Ronco, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Schreiber, Matthias R.. Universidad Técnica Federico Santa María; Chile
Fil: Villaver, E.. Agencia Espacial Española; España
Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Miller Bertolami, Marcelo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
description Context. The study of protoplanetary disc evolution and theories of planet formation has predominantly concentrated on solar- (and low-) mass stars since they host the majority of confirmed exoplanets. Nevertheless, the confirmation of numerous planets orbiting stars more massive than the Sun (up to ∼ 3 Msun) has sparked considerable interest in understanding the mechanisms involved in their formation, and thus in the evolution of their hosting protoplanetary discs. Aims. We aim to improve our knowledge of the evolution of the gaseous component of protoplanetary discs around intermediate-mass stars and to set the stage for future studies of planet formation around them. Methods. We study the long-term evolution of protoplanetary discs affected by viscous accretion and photoevaporation by X-ray and far-ultraviolet (FUV) photons from the central star around stars in the range of 1 - 3Msun, considering the effects of stellar evolution and solving the vertical structure equations of the disc. We explore the effect of different values of the viscosity parameter and the initial mass of the disc.Results. We find that the evolutionary pathway of protoplanetary disc dispersal due to photoevaporation depends on the stellar mass. Our simulations reveal four distinct evolutionary pathways for the gas component not reported before that are a consequence of stellarevolution and that likely have a substantial impact on the dust evolution, and thus on planet formation. As the stellar mass increases from one solar mass to ∼1.5 - 2Msun, the evolution of the disc changes from the conventional inside-out clearing, in which X-ray photoevaporation generates inner holes, to a homogeneous disc evolution scenario where both inner and outer discs formed after a gap is opened by photoevaporation vanish over a similar timescale. As the stellar mass continues to increase, reaching ∼2 - 3Msun, we identify a distinct pathway that we refer to as revenant disc evolution. In this scenario, the inner and outer discs reconnect after the gap opened. For the largest masses, we observe outside-in disc dispersal, in which the outer disc dissipates first due to a stronger FUV photoevaporation rate. Revenant disc evolution stands out as it is capable of extending the disc lifespan. Otherwise, the disc dispersal timescale decreases with increasing stellar mass except for low-viscosity discs.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/235927
Ronco, María Paula; Schreiber, Matthias R.; Villaver, E.; Guilera, Octavio Miguel; Miller Bertolami, Marcelo Miguel; Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass; EDP Sciences; Astronomy and Astrophysics; 682; A155; 12-2023; 1-19
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/235927
identifier_str_mv Ronco, María Paula; Schreiber, Matthias R.; Villaver, E.; Guilera, Octavio Miguel; Miller Bertolami, Marcelo Miguel; Planet formation around intermediate-mass stars. I : different disc evolutionary pathways as a function of stellar mass; EDP Sciences; Astronomy and Astrophysics; 682; A155; 12-2023; 1-19
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202347762
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202347762
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614173712973824
score 13.070432