NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors
- Autores
- DeVette, Christa I.; Andreatta, Massimo; Bardet, Wilfried; Cate, Steven J.; Jurtz, Vanessa I.; Jackson, Kenneth W.; Welm, Alana L.; Nielsen, Morten; Hildebrand, William H.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- With the advancement of personalized cancer immunotherapies, new tools are needed to identify tumor antigens and evaluate T-cell responses in model systems, specifically those that exhibit clinically relevant tumor progression. Key transgenic mouse models of breast cancer are generated and maintained on the FVB genetic background, and one such model is the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse-an immunocompetent transgenic mouse that exhibits spontaneous mammary tumor development and metastasis with high penetrance. Backcrossing the MMTV-PyMT mouse from the FVB strain onto a C57BL/6 genetic background, in order to leverage well-developed C57BL/6 immunologic tools, results in delayed tumor development and variable metastatic phenotypes.Therefore, we initiated characterization of the FVB MHC class I H-2q haplotype to establish useful immunologic tools for evaluating antigen specificity in the murine FVB strain. Our study provides the first detailed molecular and immunoproteomic characterization of the FVB H-2q MHC class I alleles, including >8,500 unique peptide ligands, a multiallele murine MHC peptide prediction tool, and in vivo validation of these data using MMTV-PyMT primary tumors. This work allows researchers to rapidly predict H-2 peptide ligands for immune testing, including, but not limited to, the MMTV-PyMT model for metastatic breast cancer.
Fil: DeVette, Christa I.. Oklahoma Medical Research Foundation; Estados Unidos
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Bardet, Wilfried. Oklahoma Medical Research Foundation; Estados Unidos
Fil: Cate, Steven J.. Oklahoma Medical Research Foundation; Estados Unidos
Fil: Jurtz, Vanessa I.. Technical University of Denmark; Dinamarca
Fil: Jackson, Kenneth W.. Oklahoma Medical Research Foundation; Estados Unidos
Fil: Welm, Alana L.. University of Utah; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca
Fil: Hildebrand, William H.. Universidad Nacional de San Martín; Argentina - Materia
-
MHC
Mouse models
Breast cancer
T cell epitopes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100066
Ver los metadatos del registro completo
id |
CONICETDig_b1a28d5056599af63db8c6a6a9fe1d32 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100066 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumorsDeVette, Christa I.Andreatta, MassimoBardet, WilfriedCate, Steven J.Jurtz, Vanessa I.Jackson, Kenneth W.Welm, Alana L.Nielsen, MortenHildebrand, William H.MHCMouse modelsBreast cancerT cell epitopeshttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3With the advancement of personalized cancer immunotherapies, new tools are needed to identify tumor antigens and evaluate T-cell responses in model systems, specifically those that exhibit clinically relevant tumor progression. Key transgenic mouse models of breast cancer are generated and maintained on the FVB genetic background, and one such model is the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse-an immunocompetent transgenic mouse that exhibits spontaneous mammary tumor development and metastasis with high penetrance. Backcrossing the MMTV-PyMT mouse from the FVB strain onto a C57BL/6 genetic background, in order to leverage well-developed C57BL/6 immunologic tools, results in delayed tumor development and variable metastatic phenotypes.Therefore, we initiated characterization of the FVB MHC class I H-2q haplotype to establish useful immunologic tools for evaluating antigen specificity in the murine FVB strain. Our study provides the first detailed molecular and immunoproteomic characterization of the FVB H-2q MHC class I alleles, including >8,500 unique peptide ligands, a multiallele murine MHC peptide prediction tool, and in vivo validation of these data using MMTV-PyMT primary tumors. This work allows researchers to rapidly predict H-2 peptide ligands for immune testing, including, but not limited to, the MMTV-PyMT model for metastatic breast cancer.Fil: DeVette, Christa I.. Oklahoma Medical Research Foundation; Estados UnidosFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Bardet, Wilfried. Oklahoma Medical Research Foundation; Estados UnidosFil: Cate, Steven J.. Oklahoma Medical Research Foundation; Estados UnidosFil: Jurtz, Vanessa I.. Technical University of Denmark; DinamarcaFil: Jackson, Kenneth W.. Oklahoma Medical Research Foundation; Estados UnidosFil: Welm, Alana L.. University of Utah; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; DinamarcaFil: Hildebrand, William H.. Universidad Nacional de San Martín; ArgentinaAmerican Association for Cancer Research2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100066DeVette, Christa I.; Andreatta, Massimo; Bardet, Wilfried; Cate, Steven J.; Jurtz, Vanessa I.; et al.; NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors; American Association for Cancer Research; Cancer Immunology Research; 6; 6; 6-2018; 636-6442326-60662326-6074CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://cancerimmunolres.aacrjournals.org/lookup/doi/10.1158/2326-6066.CIR-17-0298info:eu-repo/semantics/altIdentifier/doi/10.1158/2326-6066.CIR-17-0298info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:38Zoai:ri.conicet.gov.ar:11336/100066instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:38.932CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors |
title |
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors |
spellingShingle |
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors DeVette, Christa I. MHC Mouse models Breast cancer T cell epitopes |
title_short |
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors |
title_full |
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors |
title_fullStr |
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors |
title_full_unstemmed |
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors |
title_sort |
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors |
dc.creator.none.fl_str_mv |
DeVette, Christa I. Andreatta, Massimo Bardet, Wilfried Cate, Steven J. Jurtz, Vanessa I. Jackson, Kenneth W. Welm, Alana L. Nielsen, Morten Hildebrand, William H. |
author |
DeVette, Christa I. |
author_facet |
DeVette, Christa I. Andreatta, Massimo Bardet, Wilfried Cate, Steven J. Jurtz, Vanessa I. Jackson, Kenneth W. Welm, Alana L. Nielsen, Morten Hildebrand, William H. |
author_role |
author |
author2 |
Andreatta, Massimo Bardet, Wilfried Cate, Steven J. Jurtz, Vanessa I. Jackson, Kenneth W. Welm, Alana L. Nielsen, Morten Hildebrand, William H. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
MHC Mouse models Breast cancer T cell epitopes |
topic |
MHC Mouse models Breast cancer T cell epitopes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
With the advancement of personalized cancer immunotherapies, new tools are needed to identify tumor antigens and evaluate T-cell responses in model systems, specifically those that exhibit clinically relevant tumor progression. Key transgenic mouse models of breast cancer are generated and maintained on the FVB genetic background, and one such model is the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse-an immunocompetent transgenic mouse that exhibits spontaneous mammary tumor development and metastasis with high penetrance. Backcrossing the MMTV-PyMT mouse from the FVB strain onto a C57BL/6 genetic background, in order to leverage well-developed C57BL/6 immunologic tools, results in delayed tumor development and variable metastatic phenotypes.Therefore, we initiated characterization of the FVB MHC class I H-2q haplotype to establish useful immunologic tools for evaluating antigen specificity in the murine FVB strain. Our study provides the first detailed molecular and immunoproteomic characterization of the FVB H-2q MHC class I alleles, including >8,500 unique peptide ligands, a multiallele murine MHC peptide prediction tool, and in vivo validation of these data using MMTV-PyMT primary tumors. This work allows researchers to rapidly predict H-2 peptide ligands for immune testing, including, but not limited to, the MMTV-PyMT model for metastatic breast cancer. Fil: DeVette, Christa I.. Oklahoma Medical Research Foundation; Estados Unidos Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina Fil: Bardet, Wilfried. Oklahoma Medical Research Foundation; Estados Unidos Fil: Cate, Steven J.. Oklahoma Medical Research Foundation; Estados Unidos Fil: Jurtz, Vanessa I.. Technical University of Denmark; Dinamarca Fil: Jackson, Kenneth W.. Oklahoma Medical Research Foundation; Estados Unidos Fil: Welm, Alana L.. University of Utah; Estados Unidos Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca Fil: Hildebrand, William H.. Universidad Nacional de San Martín; Argentina |
description |
With the advancement of personalized cancer immunotherapies, new tools are needed to identify tumor antigens and evaluate T-cell responses in model systems, specifically those that exhibit clinically relevant tumor progression. Key transgenic mouse models of breast cancer are generated and maintained on the FVB genetic background, and one such model is the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse-an immunocompetent transgenic mouse that exhibits spontaneous mammary tumor development and metastasis with high penetrance. Backcrossing the MMTV-PyMT mouse from the FVB strain onto a C57BL/6 genetic background, in order to leverage well-developed C57BL/6 immunologic tools, results in delayed tumor development and variable metastatic phenotypes.Therefore, we initiated characterization of the FVB MHC class I H-2q haplotype to establish useful immunologic tools for evaluating antigen specificity in the murine FVB strain. Our study provides the first detailed molecular and immunoproteomic characterization of the FVB H-2q MHC class I alleles, including >8,500 unique peptide ligands, a multiallele murine MHC peptide prediction tool, and in vivo validation of these data using MMTV-PyMT primary tumors. This work allows researchers to rapidly predict H-2 peptide ligands for immune testing, including, but not limited to, the MMTV-PyMT model for metastatic breast cancer. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100066 DeVette, Christa I.; Andreatta, Massimo; Bardet, Wilfried; Cate, Steven J.; Jurtz, Vanessa I.; et al.; NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors; American Association for Cancer Research; Cancer Immunology Research; 6; 6; 6-2018; 636-644 2326-6066 2326-6074 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100066 |
identifier_str_mv |
DeVette, Christa I.; Andreatta, Massimo; Bardet, Wilfried; Cate, Steven J.; Jurtz, Vanessa I.; et al.; NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors; American Association for Cancer Research; Cancer Immunology Research; 6; 6; 6-2018; 636-644 2326-6066 2326-6074 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://cancerimmunolres.aacrjournals.org/lookup/doi/10.1158/2326-6066.CIR-17-0298 info:eu-repo/semantics/altIdentifier/doi/10.1158/2326-6066.CIR-17-0298 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Association for Cancer Research |
publisher.none.fl_str_mv |
American Association for Cancer Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082584819269632 |
score |
13.22299 |