Bayesian network semantics for Petri nets
- Autores
- Bruni, Roberto; Melgratti, Hernan Claudio; Montanari, Ugo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recent work by the authors equips Petri occurrence nets (PN) with probability distributions which fully replace nondeterminism. To avoid the so-called confusion problem, the construction imposes additional causal dependencies which restrict choices within certain subnets called structural branching cells (s-cells). Bayesian nets (BN) are usually structured as partial orders where nodes define conditional probability distributions. In the paper, we unify the two structures in terms of Symmetric Monoidal Categories (SMC), so that we can apply to PN ordinary analysis techniques developed for BN. Interestingly, it turns out that PN which cannot be SMC-decomposed are exactly s-cells. This result confirms the importance for Petri nets of both SMC and s-cells.
Fil: Bruni, Roberto. Università degli Studi di Pisa; Italia
Fil: Melgratti, Hernan Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Montanari, Ugo. Università degli Studi di Pisa; Italia - Materia
-
BAYESIAN NETS
BRANCHING CELLS
CONDITIONAL PROBABILITY DISTRIBUTIONS
CONFUSION
FORWARD AND BACKWARD INFERENCE
KLEISLI CATEGORIES
PETRI NETS
SYMMETRIC MONOIDAL CATEGORIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/123313
Ver los metadatos del registro completo
id |
CONICETDig_b1938103f227fa1e940ab1a9fd05c12c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/123313 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bayesian network semantics for Petri netsBruni, RobertoMelgratti, Hernan ClaudioMontanari, UgoBAYESIAN NETSBRANCHING CELLSCONDITIONAL PROBABILITY DISTRIBUTIONSCONFUSIONFORWARD AND BACKWARD INFERENCEKLEISLI CATEGORIESPETRI NETSSYMMETRIC MONOIDAL CATEGORIEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Recent work by the authors equips Petri occurrence nets (PN) with probability distributions which fully replace nondeterminism. To avoid the so-called confusion problem, the construction imposes additional causal dependencies which restrict choices within certain subnets called structural branching cells (s-cells). Bayesian nets (BN) are usually structured as partial orders where nodes define conditional probability distributions. In the paper, we unify the two structures in terms of Symmetric Monoidal Categories (SMC), so that we can apply to PN ordinary analysis techniques developed for BN. Interestingly, it turns out that PN which cannot be SMC-decomposed are exactly s-cells. This result confirms the importance for Petri nets of both SMC and s-cells.Fil: Bruni, Roberto. Università degli Studi di Pisa; ItaliaFil: Melgratti, Hernan Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Montanari, Ugo. Università degli Studi di Pisa; ItaliaElsevier Science2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123313Bruni, Roberto; Melgratti, Hernan Claudio; Montanari, Ugo; Bayesian network semantics for Petri nets; Elsevier Science; Theoretical Computer Science; 807; 2-2020; 95-1130304-3975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2019.07.034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:39Zoai:ri.conicet.gov.ar:11336/123313instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:39.788CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bayesian network semantics for Petri nets |
title |
Bayesian network semantics for Petri nets |
spellingShingle |
Bayesian network semantics for Petri nets Bruni, Roberto BAYESIAN NETS BRANCHING CELLS CONDITIONAL PROBABILITY DISTRIBUTIONS CONFUSION FORWARD AND BACKWARD INFERENCE KLEISLI CATEGORIES PETRI NETS SYMMETRIC MONOIDAL CATEGORIES |
title_short |
Bayesian network semantics for Petri nets |
title_full |
Bayesian network semantics for Petri nets |
title_fullStr |
Bayesian network semantics for Petri nets |
title_full_unstemmed |
Bayesian network semantics for Petri nets |
title_sort |
Bayesian network semantics for Petri nets |
dc.creator.none.fl_str_mv |
Bruni, Roberto Melgratti, Hernan Claudio Montanari, Ugo |
author |
Bruni, Roberto |
author_facet |
Bruni, Roberto Melgratti, Hernan Claudio Montanari, Ugo |
author_role |
author |
author2 |
Melgratti, Hernan Claudio Montanari, Ugo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BAYESIAN NETS BRANCHING CELLS CONDITIONAL PROBABILITY DISTRIBUTIONS CONFUSION FORWARD AND BACKWARD INFERENCE KLEISLI CATEGORIES PETRI NETS SYMMETRIC MONOIDAL CATEGORIES |
topic |
BAYESIAN NETS BRANCHING CELLS CONDITIONAL PROBABILITY DISTRIBUTIONS CONFUSION FORWARD AND BACKWARD INFERENCE KLEISLI CATEGORIES PETRI NETS SYMMETRIC MONOIDAL CATEGORIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recent work by the authors equips Petri occurrence nets (PN) with probability distributions which fully replace nondeterminism. To avoid the so-called confusion problem, the construction imposes additional causal dependencies which restrict choices within certain subnets called structural branching cells (s-cells). Bayesian nets (BN) are usually structured as partial orders where nodes define conditional probability distributions. In the paper, we unify the two structures in terms of Symmetric Monoidal Categories (SMC), so that we can apply to PN ordinary analysis techniques developed for BN. Interestingly, it turns out that PN which cannot be SMC-decomposed are exactly s-cells. This result confirms the importance for Petri nets of both SMC and s-cells. Fil: Bruni, Roberto. Università degli Studi di Pisa; Italia Fil: Melgratti, Hernan Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Montanari, Ugo. Università degli Studi di Pisa; Italia |
description |
Recent work by the authors equips Petri occurrence nets (PN) with probability distributions which fully replace nondeterminism. To avoid the so-called confusion problem, the construction imposes additional causal dependencies which restrict choices within certain subnets called structural branching cells (s-cells). Bayesian nets (BN) are usually structured as partial orders where nodes define conditional probability distributions. In the paper, we unify the two structures in terms of Symmetric Monoidal Categories (SMC), so that we can apply to PN ordinary analysis techniques developed for BN. Interestingly, it turns out that PN which cannot be SMC-decomposed are exactly s-cells. This result confirms the importance for Petri nets of both SMC and s-cells. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/123313 Bruni, Roberto; Melgratti, Hernan Claudio; Montanari, Ugo; Bayesian network semantics for Petri nets; Elsevier Science; Theoretical Computer Science; 807; 2-2020; 95-113 0304-3975 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/123313 |
identifier_str_mv |
Bruni, Roberto; Melgratti, Hernan Claudio; Montanari, Ugo; Bayesian network semantics for Petri nets; Elsevier Science; Theoretical Computer Science; 807; 2-2020; 95-113 0304-3975 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2019.07.034 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614459684814848 |
score |
13.070432 |