Reversing place transition nets

Autores
Melgratti, Hernan Claudio; Mezzina, Claudio Antares; Ulidowski, And Irek
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Petri nets are a well-known model of concurrency and provide an ideal setting for the study of fundamental aspects in concurrent systems. Despite their simplicity, they still lack a satisfactory causally reversible semantics. We develop such semantics for Place/Transitions Petri nets (P/T nets) based on two observations. Firstly, a net that explicitly expresses causality and conflict among events, for example an occurrence net, can be straightforwardly reversed by adding a reverse transition for each of its forward transitions. Secondly, given a P/T net the standard unfolding construction associates with it an occurrence net that preserves all of its computation. Consequently, the reversible semantics of a P/T net can be obtained as the reversible semantics of its unfolding. We show that such reversible behaviour can be expressed as a finite net whose tokens are coloured by causal histories. Colours in our encoding resemble the causal memories that are typical in reversible process calculi.
Fil: Melgratti, Hernan Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Mezzina, Claudio Antares. Università Degli Studi Di Urbino Carlo Bo; Italia
Fil: Ulidowski, And Irek. University of Leicester; Reino Unido
Materia
CAUSALLY-CONSISTENT REVERSIBILITY
PETRI NETS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/141494

id CONICETDig_8b61a127fe0641712116b346e397c597
oai_identifier_str oai:ri.conicet.gov.ar:11336/141494
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reversing place transition netsMelgratti, Hernan ClaudioMezzina, Claudio AntaresUlidowski, And IrekCAUSALLY-CONSISTENT REVERSIBILITYPETRI NETShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Petri nets are a well-known model of concurrency and provide an ideal setting for the study of fundamental aspects in concurrent systems. Despite their simplicity, they still lack a satisfactory causally reversible semantics. We develop such semantics for Place/Transitions Petri nets (P/T nets) based on two observations. Firstly, a net that explicitly expresses causality and conflict among events, for example an occurrence net, can be straightforwardly reversed by adding a reverse transition for each of its forward transitions. Secondly, given a P/T net the standard unfolding construction associates with it an occurrence net that preserves all of its computation. Consequently, the reversible semantics of a P/T net can be obtained as the reversible semantics of its unfolding. We show that such reversible behaviour can be expressed as a finite net whose tokens are coloured by causal histories. Colours in our encoding resemble the causal memories that are typical in reversible process calculi.Fil: Melgratti, Hernan Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Mezzina, Claudio Antares. Università Degli Studi Di Urbino Carlo Bo; ItaliaFil: Ulidowski, And Irek. University of Leicester; Reino UnidoTech Univ Braunschweig2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141494Melgratti, Hernan Claudio; Mezzina, Claudio Antares; Ulidowski, And Irek; Reversing place transition nets; Tech Univ Braunschweig; Logical Methods in Computer Science; 16; 4; 10-2020; 1-281860-5974CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.23638/LMCS-16(4:5)2020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:46:31Zoai:ri.conicet.gov.ar:11336/141494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:46:31.476CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reversing place transition nets
title Reversing place transition nets
spellingShingle Reversing place transition nets
Melgratti, Hernan Claudio
CAUSALLY-CONSISTENT REVERSIBILITY
PETRI NETS
title_short Reversing place transition nets
title_full Reversing place transition nets
title_fullStr Reversing place transition nets
title_full_unstemmed Reversing place transition nets
title_sort Reversing place transition nets
dc.creator.none.fl_str_mv Melgratti, Hernan Claudio
Mezzina, Claudio Antares
Ulidowski, And Irek
author Melgratti, Hernan Claudio
author_facet Melgratti, Hernan Claudio
Mezzina, Claudio Antares
Ulidowski, And Irek
author_role author
author2 Mezzina, Claudio Antares
Ulidowski, And Irek
author2_role author
author
dc.subject.none.fl_str_mv CAUSALLY-CONSISTENT REVERSIBILITY
PETRI NETS
topic CAUSALLY-CONSISTENT REVERSIBILITY
PETRI NETS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Petri nets are a well-known model of concurrency and provide an ideal setting for the study of fundamental aspects in concurrent systems. Despite their simplicity, they still lack a satisfactory causally reversible semantics. We develop such semantics for Place/Transitions Petri nets (P/T nets) based on two observations. Firstly, a net that explicitly expresses causality and conflict among events, for example an occurrence net, can be straightforwardly reversed by adding a reverse transition for each of its forward transitions. Secondly, given a P/T net the standard unfolding construction associates with it an occurrence net that preserves all of its computation. Consequently, the reversible semantics of a P/T net can be obtained as the reversible semantics of its unfolding. We show that such reversible behaviour can be expressed as a finite net whose tokens are coloured by causal histories. Colours in our encoding resemble the causal memories that are typical in reversible process calculi.
Fil: Melgratti, Hernan Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Mezzina, Claudio Antares. Università Degli Studi Di Urbino Carlo Bo; Italia
Fil: Ulidowski, And Irek. University of Leicester; Reino Unido
description Petri nets are a well-known model of concurrency and provide an ideal setting for the study of fundamental aspects in concurrent systems. Despite their simplicity, they still lack a satisfactory causally reversible semantics. We develop such semantics for Place/Transitions Petri nets (P/T nets) based on two observations. Firstly, a net that explicitly expresses causality and conflict among events, for example an occurrence net, can be straightforwardly reversed by adding a reverse transition for each of its forward transitions. Secondly, given a P/T net the standard unfolding construction associates with it an occurrence net that preserves all of its computation. Consequently, the reversible semantics of a P/T net can be obtained as the reversible semantics of its unfolding. We show that such reversible behaviour can be expressed as a finite net whose tokens are coloured by causal histories. Colours in our encoding resemble the causal memories that are typical in reversible process calculi.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/141494
Melgratti, Hernan Claudio; Mezzina, Claudio Antares; Ulidowski, And Irek; Reversing place transition nets; Tech Univ Braunschweig; Logical Methods in Computer Science; 16; 4; 10-2020; 1-28
1860-5974
CONICET Digital
CONICET
url http://hdl.handle.net/11336/141494
identifier_str_mv Melgratti, Hernan Claudio; Mezzina, Claudio Antares; Ulidowski, And Irek; Reversing place transition nets; Tech Univ Braunschweig; Logical Methods in Computer Science; 16; 4; 10-2020; 1-28
1860-5974
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.23638/LMCS-16(4:5)2020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Tech Univ Braunschweig
publisher.none.fl_str_mv Tech Univ Braunschweig
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082978486157312
score 13.22299