Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms

Autores
Stumpf, Liane; Lopez, Laura Susana
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Feeding restriction, as a trigger for compensatory growth, might be considered an alternative viable strategy for minimizing waste as well as production costs. The study assessed whether juvenile redclaw crayfish Cherax quadricarinatus (initial weight 0.99 ±0.03 g) was able to compensate for feeding restriction at different temperatures (23±1, 27±1 and 31 ±1°C). Hyperphagia, food utilization efficiency, energetic reserves, and hepatopancreas structure were analyzed. Three temperatures and two feeding regimes (DF-daily fed throughout the experiment and CF- 4 days food deprivation followed by 4 days of feeding, intermittently) were tested. The restriction period was from day 1 to 45, and the recovery period was from day 45 to 90. The previously restricted crayfish held at 23, 27, and 31 ± 1°C displayed complete body weight catch-up through compensatory growth following the restriction period with depressed growth. The mechanisms that might explain this response were higher feed intake (hyperphagia), and increased food utilization efficiency. Hepatopancreatic lipids were used as a metabolic fuel and hepatosomatic index was reduced in the previously restricted crayfish, but recovery at the same level of unrestricted crayfish occurred after the shift to daily feeding. The highest temperature affected adversely growth, feed intake, food efficiency, and metabolism of crayfish, whereas the lowest temperature and feeding restriction induced a more efficient growth of the crayfish.
Fil: Stumpf, Liane. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Lopez, Laura Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Materia
GROWTH
JUVENILES
HYPERPHAGIA
FOOD EFFICIENCY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19502

id CONICETDig_b0e7d26dc3026e706d122c3951505c85
oai_identifier_str oai:ri.conicet.gov.ar:11336/19502
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary MechanismsStumpf, LianeLopez, Laura SusanaGROWTHJUVENILESHYPERPHAGIAFOOD EFFICIENCYhttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4Feeding restriction, as a trigger for compensatory growth, might be considered an alternative viable strategy for minimizing waste as well as production costs. The study assessed whether juvenile redclaw crayfish Cherax quadricarinatus (initial weight 0.99 ±0.03 g) was able to compensate for feeding restriction at different temperatures (23±1, 27±1 and 31 ±1°C). Hyperphagia, food utilization efficiency, energetic reserves, and hepatopancreas structure were analyzed. Three temperatures and two feeding regimes (DF-daily fed throughout the experiment and CF- 4 days food deprivation followed by 4 days of feeding, intermittently) were tested. The restriction period was from day 1 to 45, and the recovery period was from day 45 to 90. The previously restricted crayfish held at 23, 27, and 31 ± 1°C displayed complete body weight catch-up through compensatory growth following the restriction period with depressed growth. The mechanisms that might explain this response were higher feed intake (hyperphagia), and increased food utilization efficiency. Hepatopancreatic lipids were used as a metabolic fuel and hepatosomatic index was reduced in the previously restricted crayfish, but recovery at the same level of unrestricted crayfish occurred after the shift to daily feeding. The highest temperature affected adversely growth, feed intake, food efficiency, and metabolism of crayfish, whereas the lowest temperature and feeding restriction induced a more efficient growth of the crayfish.Fil: Stumpf, Liane. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Lopez, Laura Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaPublic Library of Science2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19502Stumpf, Liane; Lopez, Laura Susana; Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms; Public Library of Science; Plos One; 10; 9; 9-2015; 1-19; e01393721932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0139372info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139372info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:47Zoai:ri.conicet.gov.ar:11336/19502instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:47.985CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms
title Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms
spellingShingle Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms
Stumpf, Liane
GROWTH
JUVENILES
HYPERPHAGIA
FOOD EFFICIENCY
title_short Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms
title_full Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms
title_fullStr Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms
title_full_unstemmed Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms
title_sort Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms
dc.creator.none.fl_str_mv Stumpf, Liane
Lopez, Laura Susana
author Stumpf, Liane
author_facet Stumpf, Liane
Lopez, Laura Susana
author_role author
author2 Lopez, Laura Susana
author2_role author
dc.subject.none.fl_str_mv GROWTH
JUVENILES
HYPERPHAGIA
FOOD EFFICIENCY
topic GROWTH
JUVENILES
HYPERPHAGIA
FOOD EFFICIENCY
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.2
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Feeding restriction, as a trigger for compensatory growth, might be considered an alternative viable strategy for minimizing waste as well as production costs. The study assessed whether juvenile redclaw crayfish Cherax quadricarinatus (initial weight 0.99 ±0.03 g) was able to compensate for feeding restriction at different temperatures (23±1, 27±1 and 31 ±1°C). Hyperphagia, food utilization efficiency, energetic reserves, and hepatopancreas structure were analyzed. Three temperatures and two feeding regimes (DF-daily fed throughout the experiment and CF- 4 days food deprivation followed by 4 days of feeding, intermittently) were tested. The restriction period was from day 1 to 45, and the recovery period was from day 45 to 90. The previously restricted crayfish held at 23, 27, and 31 ± 1°C displayed complete body weight catch-up through compensatory growth following the restriction period with depressed growth. The mechanisms that might explain this response were higher feed intake (hyperphagia), and increased food utilization efficiency. Hepatopancreatic lipids were used as a metabolic fuel and hepatosomatic index was reduced in the previously restricted crayfish, but recovery at the same level of unrestricted crayfish occurred after the shift to daily feeding. The highest temperature affected adversely growth, feed intake, food efficiency, and metabolism of crayfish, whereas the lowest temperature and feeding restriction induced a more efficient growth of the crayfish.
Fil: Stumpf, Liane. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Lopez, Laura Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
description Feeding restriction, as a trigger for compensatory growth, might be considered an alternative viable strategy for minimizing waste as well as production costs. The study assessed whether juvenile redclaw crayfish Cherax quadricarinatus (initial weight 0.99 ±0.03 g) was able to compensate for feeding restriction at different temperatures (23±1, 27±1 and 31 ±1°C). Hyperphagia, food utilization efficiency, energetic reserves, and hepatopancreas structure were analyzed. Three temperatures and two feeding regimes (DF-daily fed throughout the experiment and CF- 4 days food deprivation followed by 4 days of feeding, intermittently) were tested. The restriction period was from day 1 to 45, and the recovery period was from day 45 to 90. The previously restricted crayfish held at 23, 27, and 31 ± 1°C displayed complete body weight catch-up through compensatory growth following the restriction period with depressed growth. The mechanisms that might explain this response were higher feed intake (hyperphagia), and increased food utilization efficiency. Hepatopancreatic lipids were used as a metabolic fuel and hepatosomatic index was reduced in the previously restricted crayfish, but recovery at the same level of unrestricted crayfish occurred after the shift to daily feeding. The highest temperature affected adversely growth, feed intake, food efficiency, and metabolism of crayfish, whereas the lowest temperature and feeding restriction induced a more efficient growth of the crayfish.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19502
Stumpf, Liane; Lopez, Laura Susana; Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms; Public Library of Science; Plos One; 10; 9; 9-2015; 1-19; e0139372
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19502
identifier_str_mv Stumpf, Liane; Lopez, Laura Susana; Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms; Public Library of Science; Plos One; 10; 9; 9-2015; 1-19; e0139372
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0139372
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139372
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269053565009920
score 13.13397