Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions
- Autores
- Stumpf, Liane; Sarmiento Cárdenas, Paul Nicolás; Timpanaro, Santiago; Lopez, Laura Susana
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this work is to study the feasibility to induce compensatory growth in Cherax quaricarinatus crayfish at an early stage of development under high density, the typical conditions of nursery phase. An advantageous characteristic of this species is the capacity to face temporary starvation, especially at early stages of development. This would help to design feeding strategies avoiding overfeeding, and diminishing operating costs in aquaculture. In this sense, during the last 8 years it was analyzed in this species the application of intermittent feeding, known as unfavorable feeding condition followed by daily feeding (favorable feeding condition). This alternative feeding protocol was used in the present study to trigger compensatory growth. Juveniles weighing 0.07 ± 0.01 g were distributed in 2 feeding regimes: C (control): juveniles fed daily during 60 days, and IF (intermittent feeding): juveniles deprived of food for 4 days and then fed for the following 4 days, these 4 days’ cycles were repeated during the first 20 days, on day 21 they were daily fed until day 60. Juveniles were stocked in each tank under 0.0096 crayfish/cm2 density, and zootechnical and biochemical parameters were evaluated throughout 60 days. A very suitable and similar survival (~ 65%) was maintained between feeding regimes, and the previously unfavorable feeding condition did not promote greater aggression among juveniles. There was a small compensatory response, but no recovery occurred probably because the favorable feeding condition was too short to trigger a strong compensatory response. Hyperphagia and improvement of feed conversion were not observed in juveniles of IF, suggesting that the high density was the key for these primary compensatory mechanisms to be absent. The competition for food, could have affected and changed the priority in allocating energy resources for accelerated growth. Lipids and glycogen content from body mass were strongly depleted after unfavorable feeding condition, but there was almost a 100% recovery during favorable feeding condition. We suggest that this response was detrimental to body mass as a priority and as a strategy for juveniles to extend survival during the ‘double’ nutritional stress caused by intermittent feeding and high density. The applicability of this alternative feeding strategy during an intensive production system can be viable, however, some changes must be considered in order to trigger compensatory growth. We suggest that a long-term of the favorable feeding condition could trigger a strong compensatory response if the high density tested in the study is maintained. We believe that juveniles of the current study had to face two nutritionally stressful factors: food restriction and high density. This could change the priority in allocation of energetic reserves and then the other suggestion would be to reduce the density if the same alternative feeding protocol is maintained.
Fil: Stumpf, Liane. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Sarmiento Cárdenas, Paul Nicolás. Universidad Nacional de Colombia; Colombia
Fil: Timpanaro, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Lopez, Laura Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina - Materia
-
Nutritional resistance
Intermittent feeding
Compensatory growth
Nursery
High density
Cherax quadricarinatus - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/139580
Ver los metadatos del registro completo
id |
CONICETDig_67db1973bd54176d901bc2bbcdcb09ac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/139580 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditionsStumpf, LianeSarmiento Cárdenas, Paul NicolásTimpanaro, SantiagoLopez, Laura SusanaNutritional resistanceIntermittent feedingCompensatory growthNurseryHigh densityCherax quadricarinatushttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The aim of this work is to study the feasibility to induce compensatory growth in Cherax quaricarinatus crayfish at an early stage of development under high density, the typical conditions of nursery phase. An advantageous characteristic of this species is the capacity to face temporary starvation, especially at early stages of development. This would help to design feeding strategies avoiding overfeeding, and diminishing operating costs in aquaculture. In this sense, during the last 8 years it was analyzed in this species the application of intermittent feeding, known as unfavorable feeding condition followed by daily feeding (favorable feeding condition). This alternative feeding protocol was used in the present study to trigger compensatory growth. Juveniles weighing 0.07 ± 0.01 g were distributed in 2 feeding regimes: C (control): juveniles fed daily during 60 days, and IF (intermittent feeding): juveniles deprived of food for 4 days and then fed for the following 4 days, these 4 days’ cycles were repeated during the first 20 days, on day 21 they were daily fed until day 60. Juveniles were stocked in each tank under 0.0096 crayfish/cm2 density, and zootechnical and biochemical parameters were evaluated throughout 60 days. A very suitable and similar survival (~ 65%) was maintained between feeding regimes, and the previously unfavorable feeding condition did not promote greater aggression among juveniles. There was a small compensatory response, but no recovery occurred probably because the favorable feeding condition was too short to trigger a strong compensatory response. Hyperphagia and improvement of feed conversion were not observed in juveniles of IF, suggesting that the high density was the key for these primary compensatory mechanisms to be absent. The competition for food, could have affected and changed the priority in allocating energy resources for accelerated growth. Lipids and glycogen content from body mass were strongly depleted after unfavorable feeding condition, but there was almost a 100% recovery during favorable feeding condition. We suggest that this response was detrimental to body mass as a priority and as a strategy for juveniles to extend survival during the ‘double’ nutritional stress caused by intermittent feeding and high density. The applicability of this alternative feeding strategy during an intensive production system can be viable, however, some changes must be considered in order to trigger compensatory growth. We suggest that a long-term of the favorable feeding condition could trigger a strong compensatory response if the high density tested in the study is maintained. We believe that juveniles of the current study had to face two nutritionally stressful factors: food restriction and high density. This could change the priority in allocation of energetic reserves and then the other suggestion would be to reduce the density if the same alternative feeding protocol is maintained.Fil: Stumpf, Liane. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Sarmiento Cárdenas, Paul Nicolás. Universidad Nacional de Colombia; ColombiaFil: Timpanaro, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Lopez, Laura Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaElsevier Science2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/139580Stumpf, Liane; Sarmiento Cárdenas, Paul Nicolás; Timpanaro, Santiago; Lopez, Laura Susana; Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions; Elsevier Science; Aquaculture; 510; 6-2019; 302-3100044-8486CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aquaculture.2019.05.053info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0044848619308737info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:07:53Zoai:ri.conicet.gov.ar:11336/139580instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:07:53.509CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions |
title |
Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions |
spellingShingle |
Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions Stumpf, Liane Nutritional resistance Intermittent feeding Compensatory growth Nursery High density Cherax quadricarinatus |
title_short |
Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions |
title_full |
Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions |
title_fullStr |
Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions |
title_full_unstemmed |
Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions |
title_sort |
Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions |
dc.creator.none.fl_str_mv |
Stumpf, Liane Sarmiento Cárdenas, Paul Nicolás Timpanaro, Santiago Lopez, Laura Susana |
author |
Stumpf, Liane |
author_facet |
Stumpf, Liane Sarmiento Cárdenas, Paul Nicolás Timpanaro, Santiago Lopez, Laura Susana |
author_role |
author |
author2 |
Sarmiento Cárdenas, Paul Nicolás Timpanaro, Santiago Lopez, Laura Susana |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nutritional resistance Intermittent feeding Compensatory growth Nursery High density Cherax quadricarinatus |
topic |
Nutritional resistance Intermittent feeding Compensatory growth Nursery High density Cherax quadricarinatus |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this work is to study the feasibility to induce compensatory growth in Cherax quaricarinatus crayfish at an early stage of development under high density, the typical conditions of nursery phase. An advantageous characteristic of this species is the capacity to face temporary starvation, especially at early stages of development. This would help to design feeding strategies avoiding overfeeding, and diminishing operating costs in aquaculture. In this sense, during the last 8 years it was analyzed in this species the application of intermittent feeding, known as unfavorable feeding condition followed by daily feeding (favorable feeding condition). This alternative feeding protocol was used in the present study to trigger compensatory growth. Juveniles weighing 0.07 ± 0.01 g were distributed in 2 feeding regimes: C (control): juveniles fed daily during 60 days, and IF (intermittent feeding): juveniles deprived of food for 4 days and then fed for the following 4 days, these 4 days’ cycles were repeated during the first 20 days, on day 21 they were daily fed until day 60. Juveniles were stocked in each tank under 0.0096 crayfish/cm2 density, and zootechnical and biochemical parameters were evaluated throughout 60 days. A very suitable and similar survival (~ 65%) was maintained between feeding regimes, and the previously unfavorable feeding condition did not promote greater aggression among juveniles. There was a small compensatory response, but no recovery occurred probably because the favorable feeding condition was too short to trigger a strong compensatory response. Hyperphagia and improvement of feed conversion were not observed in juveniles of IF, suggesting that the high density was the key for these primary compensatory mechanisms to be absent. The competition for food, could have affected and changed the priority in allocating energy resources for accelerated growth. Lipids and glycogen content from body mass were strongly depleted after unfavorable feeding condition, but there was almost a 100% recovery during favorable feeding condition. We suggest that this response was detrimental to body mass as a priority and as a strategy for juveniles to extend survival during the ‘double’ nutritional stress caused by intermittent feeding and high density. The applicability of this alternative feeding strategy during an intensive production system can be viable, however, some changes must be considered in order to trigger compensatory growth. We suggest that a long-term of the favorable feeding condition could trigger a strong compensatory response if the high density tested in the study is maintained. We believe that juveniles of the current study had to face two nutritionally stressful factors: food restriction and high density. This could change the priority in allocation of energetic reserves and then the other suggestion would be to reduce the density if the same alternative feeding protocol is maintained. Fil: Stumpf, Liane. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Sarmiento Cárdenas, Paul Nicolás. Universidad Nacional de Colombia; Colombia Fil: Timpanaro, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Lopez, Laura Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina |
description |
The aim of this work is to study the feasibility to induce compensatory growth in Cherax quaricarinatus crayfish at an early stage of development under high density, the typical conditions of nursery phase. An advantageous characteristic of this species is the capacity to face temporary starvation, especially at early stages of development. This would help to design feeding strategies avoiding overfeeding, and diminishing operating costs in aquaculture. In this sense, during the last 8 years it was analyzed in this species the application of intermittent feeding, known as unfavorable feeding condition followed by daily feeding (favorable feeding condition). This alternative feeding protocol was used in the present study to trigger compensatory growth. Juveniles weighing 0.07 ± 0.01 g were distributed in 2 feeding regimes: C (control): juveniles fed daily during 60 days, and IF (intermittent feeding): juveniles deprived of food for 4 days and then fed for the following 4 days, these 4 days’ cycles were repeated during the first 20 days, on day 21 they were daily fed until day 60. Juveniles were stocked in each tank under 0.0096 crayfish/cm2 density, and zootechnical and biochemical parameters were evaluated throughout 60 days. A very suitable and similar survival (~ 65%) was maintained between feeding regimes, and the previously unfavorable feeding condition did not promote greater aggression among juveniles. There was a small compensatory response, but no recovery occurred probably because the favorable feeding condition was too short to trigger a strong compensatory response. Hyperphagia and improvement of feed conversion were not observed in juveniles of IF, suggesting that the high density was the key for these primary compensatory mechanisms to be absent. The competition for food, could have affected and changed the priority in allocating energy resources for accelerated growth. Lipids and glycogen content from body mass were strongly depleted after unfavorable feeding condition, but there was almost a 100% recovery during favorable feeding condition. We suggest that this response was detrimental to body mass as a priority and as a strategy for juveniles to extend survival during the ‘double’ nutritional stress caused by intermittent feeding and high density. The applicability of this alternative feeding strategy during an intensive production system can be viable, however, some changes must be considered in order to trigger compensatory growth. We suggest that a long-term of the favorable feeding condition could trigger a strong compensatory response if the high density tested in the study is maintained. We believe that juveniles of the current study had to face two nutritionally stressful factors: food restriction and high density. This could change the priority in allocation of energetic reserves and then the other suggestion would be to reduce the density if the same alternative feeding protocol is maintained. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/139580 Stumpf, Liane; Sarmiento Cárdenas, Paul Nicolás; Timpanaro, Santiago; Lopez, Laura Susana; Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions; Elsevier Science; Aquaculture; 510; 6-2019; 302-310 0044-8486 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/139580 |
identifier_str_mv |
Stumpf, Liane; Sarmiento Cárdenas, Paul Nicolás; Timpanaro, Santiago; Lopez, Laura Susana; Feasibility of compensatory growth in early juveniles of "red claw" crayfish Cherax quadricarinatus under high density conditions; Elsevier Science; Aquaculture; 510; 6-2019; 302-310 0044-8486 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aquaculture.2019.05.053 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0044848619308737 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083224213651456 |
score |
13.22299 |