Circuits for State-Dependent Modulation of Locomotion
- Autores
- Pernía Andrade, Alejandro J.; Wenger, Nikolaus; Esposito, Maria Soledad; Tovote, Philip
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.
Fil: Pernía Andrade, Alejandro J.. University Hospital Würzburg; Alemania
Fil: Wenger, Nikolaus. Humboldt-Universität zu Berlin; Alemania. Freie Universität Berlin; Alemania
Fil: Esposito, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Tovote, Philip. Universität Würzburg; Alemania. University Hospital Würzburg; Alemania - Materia
-
CIRCUITS AND CIRCUIT COMPONENTS
EMOTIONAL STATES
GAIT
LOCOMOTION
MOTOR CONTROL
NEURAL NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/167632
Ver los metadatos del registro completo
id |
CONICETDig_b0d3c4a4c84e416ab18f4427c688cbd5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/167632 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Circuits for State-Dependent Modulation of LocomotionPernía Andrade, Alejandro J.Wenger, NikolausEsposito, Maria SoledadTovote, PhilipCIRCUITS AND CIRCUIT COMPONENTSEMOTIONAL STATESGAITLOCOMOTIONMOTOR CONTROLNEURAL NETWORKShttps://purl.org/becyt/ford/3.5https://purl.org/becyt/ford/3Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.Fil: Pernía Andrade, Alejandro J.. University Hospital Würzburg; AlemaniaFil: Wenger, Nikolaus. Humboldt-Universität zu Berlin; Alemania. Freie Universität Berlin; AlemaniaFil: Esposito, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Tovote, Philip. Universität Würzburg; Alemania. University Hospital Würzburg; AlemaniaFrontiers Media2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167632Pernía Andrade, Alejandro J.; Wenger, Nikolaus; Esposito, Maria Soledad; Tovote, Philip; Circuits for State-Dependent Modulation of Locomotion; Frontiers Media; Frontiers In Human Neuroscience; 15; 745689; 11-2021; 1-201662-5161CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnhum.2021.745689info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnhum.2021.745689/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:49Zoai:ri.conicet.gov.ar:11336/167632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:49.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Circuits for State-Dependent Modulation of Locomotion |
title |
Circuits for State-Dependent Modulation of Locomotion |
spellingShingle |
Circuits for State-Dependent Modulation of Locomotion Pernía Andrade, Alejandro J. CIRCUITS AND CIRCUIT COMPONENTS EMOTIONAL STATES GAIT LOCOMOTION MOTOR CONTROL NEURAL NETWORKS |
title_short |
Circuits for State-Dependent Modulation of Locomotion |
title_full |
Circuits for State-Dependent Modulation of Locomotion |
title_fullStr |
Circuits for State-Dependent Modulation of Locomotion |
title_full_unstemmed |
Circuits for State-Dependent Modulation of Locomotion |
title_sort |
Circuits for State-Dependent Modulation of Locomotion |
dc.creator.none.fl_str_mv |
Pernía Andrade, Alejandro J. Wenger, Nikolaus Esposito, Maria Soledad Tovote, Philip |
author |
Pernía Andrade, Alejandro J. |
author_facet |
Pernía Andrade, Alejandro J. Wenger, Nikolaus Esposito, Maria Soledad Tovote, Philip |
author_role |
author |
author2 |
Wenger, Nikolaus Esposito, Maria Soledad Tovote, Philip |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CIRCUITS AND CIRCUIT COMPONENTS EMOTIONAL STATES GAIT LOCOMOTION MOTOR CONTROL NEURAL NETWORKS |
topic |
CIRCUITS AND CIRCUIT COMPONENTS EMOTIONAL STATES GAIT LOCOMOTION MOTOR CONTROL NEURAL NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.5 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders. Fil: Pernía Andrade, Alejandro J.. University Hospital Würzburg; Alemania Fil: Wenger, Nikolaus. Humboldt-Universität zu Berlin; Alemania. Freie Universität Berlin; Alemania Fil: Esposito, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Tovote, Philip. Universität Würzburg; Alemania. University Hospital Würzburg; Alemania |
description |
Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/167632 Pernía Andrade, Alejandro J.; Wenger, Nikolaus; Esposito, Maria Soledad; Tovote, Philip; Circuits for State-Dependent Modulation of Locomotion; Frontiers Media; Frontiers In Human Neuroscience; 15; 745689; 11-2021; 1-20 1662-5161 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/167632 |
identifier_str_mv |
Pernía Andrade, Alejandro J.; Wenger, Nikolaus; Esposito, Maria Soledad; Tovote, Philip; Circuits for State-Dependent Modulation of Locomotion; Frontiers Media; Frontiers In Human Neuroscience; 15; 745689; 11-2021; 1-20 1662-5161 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3389/fnhum.2021.745689 info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnhum.2021.745689/full |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082675179257856 |
score |
13.22299 |