Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics
- Autores
- Dura Bernal, Salvador; Neymotin, Samuel A.; Suter, Benjamin A.; Dacre, Joshua; Moreira, Joao V. S.; Urdapilleta, Eugenio; Schiemann, Julia; Duguid, Ian; Shepherd, Gordon M. G.; Lytton, William W.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and celltype-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors.
Fil: Dura Bernal, Salvador. State University of New York; Estados Unidos. Nathan S. Kline Institute for Psychiatric Research; Estados Unidos
Fil: Neymotin, Samuel A.. University Of New York. School Of Medicine; Estados Unidos. Nathan S. Kline Institute for Psychiatric Research; Estados Unidos
Fil: Suter, Benjamin A.. Northwestern University; Estados Unidos. Universidad de Basilea; Suiza
Fil: Dacre, Joshua. University of Edinburgh; Reino Unido
Fil: Moreira, Joao V. S.. State University of New York; Estados Unidos
Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. State University of New York; Estados Unidos
Fil: Schiemann, Julia. University of Edinburgh; Reino Unido
Fil: Duguid, Ian. University of Edinburgh; Reino Unido. Universitat Saarland; Alemania
Fil: Shepherd, Gordon M. G.. Northwestern University; Estados Unidos
Fil: Lytton, William W.. State University of New York; Estados Unidos - Materia
-
Motor cortex
Cell type-specific
Cortical circuits
Computational model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/235425
Ver los metadatos del registro completo
id |
CONICETDig_89ac362ca163da27635bf0c3c59adb08 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/235425 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamicsDura Bernal, SalvadorNeymotin, Samuel A.Suter, Benjamin A.Dacre, JoshuaMoreira, Joao V. S.Urdapilleta, EugenioSchiemann, JuliaDuguid, IanShepherd, Gordon M. G.Lytton, William W.Motor cortexCell type-specificCortical circuitsComputational modelhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and celltype-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors.Fil: Dura Bernal, Salvador. State University of New York; Estados Unidos. Nathan S. Kline Institute for Psychiatric Research; Estados UnidosFil: Neymotin, Samuel A.. University Of New York. School Of Medicine; Estados Unidos. Nathan S. Kline Institute for Psychiatric Research; Estados UnidosFil: Suter, Benjamin A.. Northwestern University; Estados Unidos. Universidad de Basilea; SuizaFil: Dacre, Joshua. University of Edinburgh; Reino UnidoFil: Moreira, Joao V. S.. State University of New York; Estados UnidosFil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. State University of New York; Estados UnidosFil: Schiemann, Julia. University of Edinburgh; Reino UnidoFil: Duguid, Ian. University of Edinburgh; Reino Unido. Universitat Saarland; AlemaniaFil: Shepherd, Gordon M. G.. Northwestern University; Estados UnidosFil: Lytton, William W.. State University of New York; Estados UnidosCell Press2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235425Dura Bernal, Salvador; Neymotin, Samuel A.; Suter, Benjamin A.; Dacre, Joshua; Moreira, Joao V. S.; et al.; Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics; Cell Press; Cell Reports; 42; 6; 6-2023; 1-292639-18562211-1247CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2211124723005855info:eu-repo/semantics/altIdentifier/doi/10.1016/j.celrep.2023.112574info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:40Zoai:ri.conicet.gov.ar:11336/235425instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:41.131CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title |
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
spellingShingle |
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics Dura Bernal, Salvador Motor cortex Cell type-specific Cortical circuits Computational model |
title_short |
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title_full |
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title_fullStr |
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title_full_unstemmed |
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title_sort |
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
dc.creator.none.fl_str_mv |
Dura Bernal, Salvador Neymotin, Samuel A. Suter, Benjamin A. Dacre, Joshua Moreira, Joao V. S. Urdapilleta, Eugenio Schiemann, Julia Duguid, Ian Shepherd, Gordon M. G. Lytton, William W. |
author |
Dura Bernal, Salvador |
author_facet |
Dura Bernal, Salvador Neymotin, Samuel A. Suter, Benjamin A. Dacre, Joshua Moreira, Joao V. S. Urdapilleta, Eugenio Schiemann, Julia Duguid, Ian Shepherd, Gordon M. G. Lytton, William W. |
author_role |
author |
author2 |
Neymotin, Samuel A. Suter, Benjamin A. Dacre, Joshua Moreira, Joao V. S. Urdapilleta, Eugenio Schiemann, Julia Duguid, Ian Shepherd, Gordon M. G. Lytton, William W. |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
Motor cortex Cell type-specific Cortical circuits Computational model |
topic |
Motor cortex Cell type-specific Cortical circuits Computational model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and celltype-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors. Fil: Dura Bernal, Salvador. State University of New York; Estados Unidos. Nathan S. Kline Institute for Psychiatric Research; Estados Unidos Fil: Neymotin, Samuel A.. University Of New York. School Of Medicine; Estados Unidos. Nathan S. Kline Institute for Psychiatric Research; Estados Unidos Fil: Suter, Benjamin A.. Northwestern University; Estados Unidos. Universidad de Basilea; Suiza Fil: Dacre, Joshua. University of Edinburgh; Reino Unido Fil: Moreira, Joao V. S.. State University of New York; Estados Unidos Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. State University of New York; Estados Unidos Fil: Schiemann, Julia. University of Edinburgh; Reino Unido Fil: Duguid, Ian. University of Edinburgh; Reino Unido. Universitat Saarland; Alemania Fil: Shepherd, Gordon M. G.. Northwestern University; Estados Unidos Fil: Lytton, William W.. State University of New York; Estados Unidos |
description |
Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and celltype-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/235425 Dura Bernal, Salvador; Neymotin, Samuel A.; Suter, Benjamin A.; Dacre, Joshua; Moreira, Joao V. S.; et al.; Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics; Cell Press; Cell Reports; 42; 6; 6-2023; 1-29 2639-1856 2211-1247 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/235425 |
identifier_str_mv |
Dura Bernal, Salvador; Neymotin, Samuel A.; Suter, Benjamin A.; Dacre, Joshua; Moreira, Joao V. S.; et al.; Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics; Cell Press; Cell Reports; 42; 6; 6-2023; 1-29 2639-1856 2211-1247 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2211124723005855 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.celrep.2023.112574 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cell Press |
publisher.none.fl_str_mv |
Cell Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083345766678528 |
score |
13.22299 |