EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472)
- Autores
- Gerard, Matias Fernando; Stegmayer, Georgina; Milone, Diego Humberto
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The evolutionary metabolic synthesizer (EvoMS) is an evolutionary tool capable of finding novel metabolic pathways linking several compounds through feasible reactions. It allows system biologists to explore different alternatives for relating specific metabolites, offering the possibility of indicating the initial compound or allowing the algorithm to automatically select it. Searching process can be followed graphically through several plots of the evolutionary process. Metabolic pathways found are displayed in a web browser as directed graphs. In all cases, solutions are networks of reactions that produce linear or branched metabolic pathways which are feasible from the specified set of available compounds.
Fil: Gerard, Matias Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Evolutionary Algorithms
Metabolic Network Representation
Metabolic Pathway Searching
Pathway Synthesis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46343
Ver los metadatos del registro completo
id |
CONICETDig_b06c78b5c8ea24fa3167f78dbc8bc49e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46343 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472)Gerard, Matias FernandoStegmayer, GeorginaMilone, Diego HumbertoEvolutionary AlgorithmsMetabolic Network RepresentationMetabolic Pathway SearchingPathway Synthesishttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The evolutionary metabolic synthesizer (EvoMS) is an evolutionary tool capable of finding novel metabolic pathways linking several compounds through feasible reactions. It allows system biologists to explore different alternatives for relating specific metabolites, offering the possibility of indicating the initial compound or allowing the algorithm to automatically select it. Searching process can be followed graphically through several plots of the evolutionary process. Metabolic pathways found are displayed in a web browser as directed graphs. In all cases, solutions are networks of reactions that produce linear or branched metabolic pathways which are feasible from the specified set of available compounds.Fil: Gerard, Matias Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaElsevier2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46343Gerard, Matias Fernando; Stegmayer, Georgina; Milone, Diego Humberto; EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472); Elsevier; Biosystems; 134; 8-2015; 43-470303-2647CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.biosystems.2015.04.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303264715000647info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:20Zoai:ri.conicet.gov.ar:11336/46343instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:21.016CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472) |
title |
EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472) |
spellingShingle |
EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472) Gerard, Matias Fernando Evolutionary Algorithms Metabolic Network Representation Metabolic Pathway Searching Pathway Synthesis |
title_short |
EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472) |
title_full |
EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472) |
title_fullStr |
EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472) |
title_full_unstemmed |
EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472) |
title_sort |
EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472) |
dc.creator.none.fl_str_mv |
Gerard, Matias Fernando Stegmayer, Georgina Milone, Diego Humberto |
author |
Gerard, Matias Fernando |
author_facet |
Gerard, Matias Fernando Stegmayer, Georgina Milone, Diego Humberto |
author_role |
author |
author2 |
Stegmayer, Georgina Milone, Diego Humberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Evolutionary Algorithms Metabolic Network Representation Metabolic Pathway Searching Pathway Synthesis |
topic |
Evolutionary Algorithms Metabolic Network Representation Metabolic Pathway Searching Pathway Synthesis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The evolutionary metabolic synthesizer (EvoMS) is an evolutionary tool capable of finding novel metabolic pathways linking several compounds through feasible reactions. It allows system biologists to explore different alternatives for relating specific metabolites, offering the possibility of indicating the initial compound or allowing the algorithm to automatically select it. Searching process can be followed graphically through several plots of the evolutionary process. Metabolic pathways found are displayed in a web browser as directed graphs. In all cases, solutions are networks of reactions that produce linear or branched metabolic pathways which are feasible from the specified set of available compounds. Fil: Gerard, Matias Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
The evolutionary metabolic synthesizer (EvoMS) is an evolutionary tool capable of finding novel metabolic pathways linking several compounds through feasible reactions. It allows system biologists to explore different alternatives for relating specific metabolites, offering the possibility of indicating the initial compound or allowing the algorithm to automatically select it. Searching process can be followed graphically through several plots of the evolutionary process. Metabolic pathways found are displayed in a web browser as directed graphs. In all cases, solutions are networks of reactions that produce linear or branched metabolic pathways which are feasible from the specified set of available compounds. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46343 Gerard, Matias Fernando; Stegmayer, Georgina; Milone, Diego Humberto; EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472); Elsevier; Biosystems; 134; 8-2015; 43-47 0303-2647 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46343 |
identifier_str_mv |
Gerard, Matias Fernando; Stegmayer, Georgina; Milone, Diego Humberto; EvoMS: an evolutionary tool to find de novo metabolic pathways (IF 1.472); Elsevier; Biosystems; 134; 8-2015; 43-47 0303-2647 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biosystems.2015.04.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303264715000647 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613024036421632 |
score |
13.070432 |