An evolutionary approach for searching metabolic pathways
- Autores
- Gerard, Matias Fernando; Stegmayer, Georgina; Milone, Diego Humberto
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Searching metabolic pathways that relate two compounds is a common task in bioinformatics. This is of particular interest when trying, for example, to discover metabolic relations among compounds clustered with a data mining technique. Search strategies find sequences to relate two or more states (compounds) using an appropriate set of transitions (reactions). Evolutionary algorithms carry out the search guided by a fitness function and explore multiple candidate solutions using stochastic operators. In this work we propose an evolutionary algorithm for searching metabolic pathways between two compounds. The operators and fitness function employed are described and the effect of mutation rate is studied. Performance of this algorithm is compared with two classical search strategies.
Fil: Gerard, Matias Fernando. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina
Fil: Stegmayer, Georgina. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina - Materia
-
Search Strategies
Evolutionary Algorithms
Metabolic Pathways - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14570
Ver los metadatos del registro completo
id |
CONICETDig_6733b9ecc7431a8351c65599b1c83a65 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14570 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An evolutionary approach for searching metabolic pathwaysGerard, Matias FernandoStegmayer, GeorginaMilone, Diego HumbertoSearch StrategiesEvolutionary AlgorithmsMetabolic Pathwayshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Searching metabolic pathways that relate two compounds is a common task in bioinformatics. This is of particular interest when trying, for example, to discover metabolic relations among compounds clustered with a data mining technique. Search strategies find sequences to relate two or more states (compounds) using an appropriate set of transitions (reactions). Evolutionary algorithms carry out the search guided by a fitness function and explore multiple candidate solutions using stochastic operators. In this work we propose an evolutionary algorithm for searching metabolic pathways between two compounds. The operators and fitness function employed are described and the effect of mutation rate is studied. Performance of this algorithm is compared with two classical search strategies.Fil: Gerard, Matias Fernando. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; ArgentinaFil: Stegmayer, Georgina. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; ArgentinaElsevier2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14570Gerard, Matias Fernando; Stegmayer, Georgina; Milone, Diego Humberto; An evolutionary approach for searching metabolic pathways; Elsevier; Computers In Biology And Medicine; 43; 11; 11-2013; 1704-17120010-4825enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiomed.2013.08.017info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0010482513002321info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:41Zoai:ri.conicet.gov.ar:11336/14570instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:41.839CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An evolutionary approach for searching metabolic pathways |
title |
An evolutionary approach for searching metabolic pathways |
spellingShingle |
An evolutionary approach for searching metabolic pathways Gerard, Matias Fernando Search Strategies Evolutionary Algorithms Metabolic Pathways |
title_short |
An evolutionary approach for searching metabolic pathways |
title_full |
An evolutionary approach for searching metabolic pathways |
title_fullStr |
An evolutionary approach for searching metabolic pathways |
title_full_unstemmed |
An evolutionary approach for searching metabolic pathways |
title_sort |
An evolutionary approach for searching metabolic pathways |
dc.creator.none.fl_str_mv |
Gerard, Matias Fernando Stegmayer, Georgina Milone, Diego Humberto |
author |
Gerard, Matias Fernando |
author_facet |
Gerard, Matias Fernando Stegmayer, Georgina Milone, Diego Humberto |
author_role |
author |
author2 |
Stegmayer, Georgina Milone, Diego Humberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Search Strategies Evolutionary Algorithms Metabolic Pathways |
topic |
Search Strategies Evolutionary Algorithms Metabolic Pathways |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Searching metabolic pathways that relate two compounds is a common task in bioinformatics. This is of particular interest when trying, for example, to discover metabolic relations among compounds clustered with a data mining technique. Search strategies find sequences to relate two or more states (compounds) using an appropriate set of transitions (reactions). Evolutionary algorithms carry out the search guided by a fitness function and explore multiple candidate solutions using stochastic operators. In this work we propose an evolutionary algorithm for searching metabolic pathways between two compounds. The operators and fitness function employed are described and the effect of mutation rate is studied. Performance of this algorithm is compared with two classical search strategies. Fil: Gerard, Matias Fernando. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina Fil: Stegmayer, Georgina. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina |
description |
Searching metabolic pathways that relate two compounds is a common task in bioinformatics. This is of particular interest when trying, for example, to discover metabolic relations among compounds clustered with a data mining technique. Search strategies find sequences to relate two or more states (compounds) using an appropriate set of transitions (reactions). Evolutionary algorithms carry out the search guided by a fitness function and explore multiple candidate solutions using stochastic operators. In this work we propose an evolutionary algorithm for searching metabolic pathways between two compounds. The operators and fitness function employed are described and the effect of mutation rate is studied. Performance of this algorithm is compared with two classical search strategies. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14570 Gerard, Matias Fernando; Stegmayer, Georgina; Milone, Diego Humberto; An evolutionary approach for searching metabolic pathways; Elsevier; Computers In Biology And Medicine; 43; 11; 11-2013; 1704-1712 0010-4825 |
url |
http://hdl.handle.net/11336/14570 |
identifier_str_mv |
Gerard, Matias Fernando; Stegmayer, Georgina; Milone, Diego Humberto; An evolutionary approach for searching metabolic pathways; Elsevier; Computers In Biology And Medicine; 43; 11; 11-2013; 1704-1712 0010-4825 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiomed.2013.08.017 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0010482513002321 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614448290988032 |
score |
13.070432 |