Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth
- Autores
- Roberti, Sabrina Lorena; Higa, Romina Daniela; White, Verónica; Powell, Theresa L.; Jansson, Thomas; Jawerbaum, Alicia Sandra
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- STUDY QUESTION: What are the consequences of inhibiting mTOR, the mechanistic target of rapamycin (mTOR), and the peroxisome proliferator activated receptor gamma (PPARγ) and PPARδ pathways in the early post-implantation period on decidual function, embryo viability and feto-placental growth in the ratγ SUMMARY ANSWER: mTOR inhibition from Days 7 to 9 of pregnancy in rats caused decidual PPARγ and PPARδ upregulation on Day 9 of pregnancy and resulted in embryo resorption by Day 14 of pregnancy. PPARγ and PPARδ inhibition differentially affected decidual mTOR signaling and levels of target proteins relevant to lipid histotrophic nutrition and led to reduced feto-placental weights on Day 14 of pregnancy. WHAT IS KNOWN ALREADY: Although mTOR, PPARγ and PPARδ are nutrient sensors important during implantation, the role of these signaling pathways in decidual function and how they interact in the early post-implantation period are unknown. Perilipin 2 (PLIN2) and fatty acid binding protein 4 (FABP4), two adipogenic proteins involved in lipid histotrophic nutrition, are targets of mTOR and PPAR signaling pathways in a variety of tissues. STUDY DESIGN, SIZE, DURATION: Rapamycin (mTOR inhibitor, 0.75 mg/kg, sc), T0070907 (PPARγ inhibitor, 0.001 mg/kg, sc), GSK0660 (PPARδ inhibitor, 0.1 mg/kg, sc) or vehicle was injected daily to pregnant rats from Days 7 to 9 of pregnancy and the studies were performed on Day 9 of pregnancy (n = 7 per group) or Day 14 of pregnancy (n = 7 per group). PARTICIPANTS/MATERIALS, SETTING, METHODS: On Day 9 of pregnancy, rat decidua were collected and prepared for western blot and immunohistochemical studies. On Day 14 of pregnancy, the resorption rate, number of viable fetuses, crown-rump length and placental and decidual weights were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Inhibition of mTOR in the early post-implantation period led to a reduction in FABP4 protein levels, an increase in PLIN2 levels and an upregulation of PPARγ and PPARδ in 9-day-pregnant rat decidua. Most embryos were viable on Day 9 of pregnancy but had resorbed by Day 14 of pregnancy. This denotes a key function of mTOR in the post-implantation period and suggests that activation of PPAR signaling was insufficient to compensate for impaired nutritional/survival signaling induced by mTOR inhibition. Inhibition of PPARγ signaling resulted in decreased decidual PLIN2 and FABP4 protein expression as well as in inhibition of decidual mTOR signaling in Day 9 of pregnancy. This treatment also reduced feto-placental growth on Day 14 of pregnancy, revealing the relevance of PPARγ signaling in sustaining post-implantation growth. Moreover, following inhibition of PPARδ, PLIN2 levels were decreased and mTOR complex 1 and 2 signaling was altered in decidua on Day 9 of pregnancy. On Day 14 of pregnancy, PPARδ inhibition caused reduced fetoplacental weight, increased decidual weight and increased resorption rate, suggesting a key role of PPARδ in sustaining post-implantation development. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: This is an in vivo animal study and the relevance of the results for humans remains to be established. WIDER IMPLICATIONS OF THE FINDINGS: The early post-implantation period is a critical window of development and changes in the intrauterine environment may cause embryo resorption and lead to placental and fetal growth restriction. mTOR, PPARγ and PPARδ signaling are decidual nutrient sensors with extensive cross-talk that regulates adipogenic proteins involved in histotrophic nutrition and important for embryo viability and early placental and fetal development and growth. STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by the Agencia Nacional de Promoción Científica y Tecnológica de Argentina (PICT 2014-411 and PICT 2015-0130), and by the International Cooperation (Grants CONICET-NIH-2014 and CONICETNIH- 2017) to A.J. and T.J. The authors have no conflicts of interest.
Fil: Roberti, Sabrina Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Higa, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: White, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Powell, Theresa L.. State University of Colorado at Boulder; Estados Unidos
Fil: Jansson, Thomas. State University of Colorado at Boulder; Estados Unidos
Fil: Jawerbaum, Alicia Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina - Materia
-
DECIDUA
EMBRYO RESORPTION
HISTOTROPHIC NUTRITION
PPARS
MTOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87275
Ver los metadatos del registro completo
id |
CONICETDig_b056debb42f322b5f76a1081bf48c40a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87275 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growthRoberti, Sabrina LorenaHiga, Romina DanielaWhite, VerónicaPowell, Theresa L.Jansson, ThomasJawerbaum, Alicia SandraDECIDUAEMBRYO RESORPTIONHISTOTROPHIC NUTRITIONPPARSMTORhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1STUDY QUESTION: What are the consequences of inhibiting mTOR, the mechanistic target of rapamycin (mTOR), and the peroxisome proliferator activated receptor gamma (PPARγ) and PPARδ pathways in the early post-implantation period on decidual function, embryo viability and feto-placental growth in the ratγ SUMMARY ANSWER: mTOR inhibition from Days 7 to 9 of pregnancy in rats caused decidual PPARγ and PPARδ upregulation on Day 9 of pregnancy and resulted in embryo resorption by Day 14 of pregnancy. PPARγ and PPARδ inhibition differentially affected decidual mTOR signaling and levels of target proteins relevant to lipid histotrophic nutrition and led to reduced feto-placental weights on Day 14 of pregnancy. WHAT IS KNOWN ALREADY: Although mTOR, PPARγ and PPARδ are nutrient sensors important during implantation, the role of these signaling pathways in decidual function and how they interact in the early post-implantation period are unknown. Perilipin 2 (PLIN2) and fatty acid binding protein 4 (FABP4), two adipogenic proteins involved in lipid histotrophic nutrition, are targets of mTOR and PPAR signaling pathways in a variety of tissues. STUDY DESIGN, SIZE, DURATION: Rapamycin (mTOR inhibitor, 0.75 mg/kg, sc), T0070907 (PPARγ inhibitor, 0.001 mg/kg, sc), GSK0660 (PPARδ inhibitor, 0.1 mg/kg, sc) or vehicle was injected daily to pregnant rats from Days 7 to 9 of pregnancy and the studies were performed on Day 9 of pregnancy (n = 7 per group) or Day 14 of pregnancy (n = 7 per group). PARTICIPANTS/MATERIALS, SETTING, METHODS: On Day 9 of pregnancy, rat decidua were collected and prepared for western blot and immunohistochemical studies. On Day 14 of pregnancy, the resorption rate, number of viable fetuses, crown-rump length and placental and decidual weights were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Inhibition of mTOR in the early post-implantation period led to a reduction in FABP4 protein levels, an increase in PLIN2 levels and an upregulation of PPARγ and PPARδ in 9-day-pregnant rat decidua. Most embryos were viable on Day 9 of pregnancy but had resorbed by Day 14 of pregnancy. This denotes a key function of mTOR in the post-implantation period and suggests that activation of PPAR signaling was insufficient to compensate for impaired nutritional/survival signaling induced by mTOR inhibition. Inhibition of PPARγ signaling resulted in decreased decidual PLIN2 and FABP4 protein expression as well as in inhibition of decidual mTOR signaling in Day 9 of pregnancy. This treatment also reduced feto-placental growth on Day 14 of pregnancy, revealing the relevance of PPARγ signaling in sustaining post-implantation growth. Moreover, following inhibition of PPARδ, PLIN2 levels were decreased and mTOR complex 1 and 2 signaling was altered in decidua on Day 9 of pregnancy. On Day 14 of pregnancy, PPARδ inhibition caused reduced fetoplacental weight, increased decidual weight and increased resorption rate, suggesting a key role of PPARδ in sustaining post-implantation development. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: This is an in vivo animal study and the relevance of the results for humans remains to be established. WIDER IMPLICATIONS OF THE FINDINGS: The early post-implantation period is a critical window of development and changes in the intrauterine environment may cause embryo resorption and lead to placental and fetal growth restriction. mTOR, PPARγ and PPARδ signaling are decidual nutrient sensors with extensive cross-talk that regulates adipogenic proteins involved in histotrophic nutrition and important for embryo viability and early placental and fetal development and growth. STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by the Agencia Nacional de Promoción Científica y Tecnológica de Argentina (PICT 2014-411 and PICT 2015-0130), and by the International Cooperation (Grants CONICET-NIH-2014 and CONICETNIH- 2017) to A.J. and T.J. The authors have no conflicts of interest.Fil: Roberti, Sabrina Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Higa, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: White, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Powell, Theresa L.. State University of Colorado at Boulder; Estados UnidosFil: Jansson, Thomas. State University of Colorado at Boulder; Estados UnidosFil: Jawerbaum, Alicia Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaOxford University Press2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87275Roberti, Sabrina Lorena; Higa, Romina Daniela; White, Verónica; Powell, Theresa L.; Jansson, Thomas; et al.; Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth; Oxford University Press; Molecular Human Reproduction; 24; 6; 6-2018; 327-3401360-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676979/info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/molehr/article/24/6/327/4930827info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)https://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:31Zoai:ri.conicet.gov.ar:11336/87275instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:32.145CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth |
title |
Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth |
spellingShingle |
Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth Roberti, Sabrina Lorena DECIDUA EMBRYO RESORPTION HISTOTROPHIC NUTRITION PPARS MTOR |
title_short |
Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth |
title_full |
Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth |
title_fullStr |
Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth |
title_full_unstemmed |
Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth |
title_sort |
Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth |
dc.creator.none.fl_str_mv |
Roberti, Sabrina Lorena Higa, Romina Daniela White, Verónica Powell, Theresa L. Jansson, Thomas Jawerbaum, Alicia Sandra |
author |
Roberti, Sabrina Lorena |
author_facet |
Roberti, Sabrina Lorena Higa, Romina Daniela White, Verónica Powell, Theresa L. Jansson, Thomas Jawerbaum, Alicia Sandra |
author_role |
author |
author2 |
Higa, Romina Daniela White, Verónica Powell, Theresa L. Jansson, Thomas Jawerbaum, Alicia Sandra |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
DECIDUA EMBRYO RESORPTION HISTOTROPHIC NUTRITION PPARS MTOR |
topic |
DECIDUA EMBRYO RESORPTION HISTOTROPHIC NUTRITION PPARS MTOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
STUDY QUESTION: What are the consequences of inhibiting mTOR, the mechanistic target of rapamycin (mTOR), and the peroxisome proliferator activated receptor gamma (PPARγ) and PPARδ pathways in the early post-implantation period on decidual function, embryo viability and feto-placental growth in the ratγ SUMMARY ANSWER: mTOR inhibition from Days 7 to 9 of pregnancy in rats caused decidual PPARγ and PPARδ upregulation on Day 9 of pregnancy and resulted in embryo resorption by Day 14 of pregnancy. PPARγ and PPARδ inhibition differentially affected decidual mTOR signaling and levels of target proteins relevant to lipid histotrophic nutrition and led to reduced feto-placental weights on Day 14 of pregnancy. WHAT IS KNOWN ALREADY: Although mTOR, PPARγ and PPARδ are nutrient sensors important during implantation, the role of these signaling pathways in decidual function and how they interact in the early post-implantation period are unknown. Perilipin 2 (PLIN2) and fatty acid binding protein 4 (FABP4), two adipogenic proteins involved in lipid histotrophic nutrition, are targets of mTOR and PPAR signaling pathways in a variety of tissues. STUDY DESIGN, SIZE, DURATION: Rapamycin (mTOR inhibitor, 0.75 mg/kg, sc), T0070907 (PPARγ inhibitor, 0.001 mg/kg, sc), GSK0660 (PPARδ inhibitor, 0.1 mg/kg, sc) or vehicle was injected daily to pregnant rats from Days 7 to 9 of pregnancy and the studies were performed on Day 9 of pregnancy (n = 7 per group) or Day 14 of pregnancy (n = 7 per group). PARTICIPANTS/MATERIALS, SETTING, METHODS: On Day 9 of pregnancy, rat decidua were collected and prepared for western blot and immunohistochemical studies. On Day 14 of pregnancy, the resorption rate, number of viable fetuses, crown-rump length and placental and decidual weights were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Inhibition of mTOR in the early post-implantation period led to a reduction in FABP4 protein levels, an increase in PLIN2 levels and an upregulation of PPARγ and PPARδ in 9-day-pregnant rat decidua. Most embryos were viable on Day 9 of pregnancy but had resorbed by Day 14 of pregnancy. This denotes a key function of mTOR in the post-implantation period and suggests that activation of PPAR signaling was insufficient to compensate for impaired nutritional/survival signaling induced by mTOR inhibition. Inhibition of PPARγ signaling resulted in decreased decidual PLIN2 and FABP4 protein expression as well as in inhibition of decidual mTOR signaling in Day 9 of pregnancy. This treatment also reduced feto-placental growth on Day 14 of pregnancy, revealing the relevance of PPARγ signaling in sustaining post-implantation growth. Moreover, following inhibition of PPARδ, PLIN2 levels were decreased and mTOR complex 1 and 2 signaling was altered in decidua on Day 9 of pregnancy. On Day 14 of pregnancy, PPARδ inhibition caused reduced fetoplacental weight, increased decidual weight and increased resorption rate, suggesting a key role of PPARδ in sustaining post-implantation development. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: This is an in vivo animal study and the relevance of the results for humans remains to be established. WIDER IMPLICATIONS OF THE FINDINGS: The early post-implantation period is a critical window of development and changes in the intrauterine environment may cause embryo resorption and lead to placental and fetal growth restriction. mTOR, PPARγ and PPARδ signaling are decidual nutrient sensors with extensive cross-talk that regulates adipogenic proteins involved in histotrophic nutrition and important for embryo viability and early placental and fetal development and growth. STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by the Agencia Nacional de Promoción Científica y Tecnológica de Argentina (PICT 2014-411 and PICT 2015-0130), and by the International Cooperation (Grants CONICET-NIH-2014 and CONICETNIH- 2017) to A.J. and T.J. The authors have no conflicts of interest. Fil: Roberti, Sabrina Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina Fil: Higa, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina Fil: White, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina Fil: Powell, Theresa L.. State University of Colorado at Boulder; Estados Unidos Fil: Jansson, Thomas. State University of Colorado at Boulder; Estados Unidos Fil: Jawerbaum, Alicia Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina |
description |
STUDY QUESTION: What are the consequences of inhibiting mTOR, the mechanistic target of rapamycin (mTOR), and the peroxisome proliferator activated receptor gamma (PPARγ) and PPARδ pathways in the early post-implantation period on decidual function, embryo viability and feto-placental growth in the ratγ SUMMARY ANSWER: mTOR inhibition from Days 7 to 9 of pregnancy in rats caused decidual PPARγ and PPARδ upregulation on Day 9 of pregnancy and resulted in embryo resorption by Day 14 of pregnancy. PPARγ and PPARδ inhibition differentially affected decidual mTOR signaling and levels of target proteins relevant to lipid histotrophic nutrition and led to reduced feto-placental weights on Day 14 of pregnancy. WHAT IS KNOWN ALREADY: Although mTOR, PPARγ and PPARδ are nutrient sensors important during implantation, the role of these signaling pathways in decidual function and how they interact in the early post-implantation period are unknown. Perilipin 2 (PLIN2) and fatty acid binding protein 4 (FABP4), two adipogenic proteins involved in lipid histotrophic nutrition, are targets of mTOR and PPAR signaling pathways in a variety of tissues. STUDY DESIGN, SIZE, DURATION: Rapamycin (mTOR inhibitor, 0.75 mg/kg, sc), T0070907 (PPARγ inhibitor, 0.001 mg/kg, sc), GSK0660 (PPARδ inhibitor, 0.1 mg/kg, sc) or vehicle was injected daily to pregnant rats from Days 7 to 9 of pregnancy and the studies were performed on Day 9 of pregnancy (n = 7 per group) or Day 14 of pregnancy (n = 7 per group). PARTICIPANTS/MATERIALS, SETTING, METHODS: On Day 9 of pregnancy, rat decidua were collected and prepared for western blot and immunohistochemical studies. On Day 14 of pregnancy, the resorption rate, number of viable fetuses, crown-rump length and placental and decidual weights were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Inhibition of mTOR in the early post-implantation period led to a reduction in FABP4 protein levels, an increase in PLIN2 levels and an upregulation of PPARγ and PPARδ in 9-day-pregnant rat decidua. Most embryos were viable on Day 9 of pregnancy but had resorbed by Day 14 of pregnancy. This denotes a key function of mTOR in the post-implantation period and suggests that activation of PPAR signaling was insufficient to compensate for impaired nutritional/survival signaling induced by mTOR inhibition. Inhibition of PPARγ signaling resulted in decreased decidual PLIN2 and FABP4 protein expression as well as in inhibition of decidual mTOR signaling in Day 9 of pregnancy. This treatment also reduced feto-placental growth on Day 14 of pregnancy, revealing the relevance of PPARγ signaling in sustaining post-implantation growth. Moreover, following inhibition of PPARδ, PLIN2 levels were decreased and mTOR complex 1 and 2 signaling was altered in decidua on Day 9 of pregnancy. On Day 14 of pregnancy, PPARδ inhibition caused reduced fetoplacental weight, increased decidual weight and increased resorption rate, suggesting a key role of PPARδ in sustaining post-implantation development. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: This is an in vivo animal study and the relevance of the results for humans remains to be established. WIDER IMPLICATIONS OF THE FINDINGS: The early post-implantation period is a critical window of development and changes in the intrauterine environment may cause embryo resorption and lead to placental and fetal growth restriction. mTOR, PPARγ and PPARδ signaling are decidual nutrient sensors with extensive cross-talk that regulates adipogenic proteins involved in histotrophic nutrition and important for embryo viability and early placental and fetal development and growth. STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by the Agencia Nacional de Promoción Científica y Tecnológica de Argentina (PICT 2014-411 and PICT 2015-0130), and by the International Cooperation (Grants CONICET-NIH-2014 and CONICETNIH- 2017) to A.J. and T.J. The authors have no conflicts of interest. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87275 Roberti, Sabrina Lorena; Higa, Romina Daniela; White, Verónica; Powell, Theresa L.; Jansson, Thomas; et al.; Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth; Oxford University Press; Molecular Human Reproduction; 24; 6; 6-2018; 327-340 1360-9947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87275 |
identifier_str_mv |
Roberti, Sabrina Lorena; Higa, Romina Daniela; White, Verónica; Powell, Theresa L.; Jansson, Thomas; et al.; Critical role of mTOR, PPARγ and PPARδ signaling in regulating early pregnancy decidual function, embryo viability and feto-placental growth; Oxford University Press; Molecular Human Reproduction; 24; 6; 6-2018; 327-340 1360-9947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676979/ info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/molehr/article/24/6/327/4930827 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269099719131136 |
score |
13.13397 |