Software Engineering and complexity in effective Algebraic Geometry
- Autores
- Heintz, Joos Ulrich; Kuijpers, Bart; Rojas Paredes, Andres Avelino
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One may represent polynomials not only by their coefficients but also by arithmetic circuits which evaluate them. This idea allowed in the past fifteen years considerable complexity progress in effective polynomial equation solving. We present a circuit based computation model which captures all known symbolic elimination algorithms in effective Algebraic Geometry and exhibit a class of simple elimination problems which require exponential size circuits to be solved in this model. This implies that the known, circuit based elimination algorithms are already optimal.
Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kuijpers, Bart. Hasselt University; Bélgica
Fil: Rojas Paredes, Andres Avelino. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Robust Parameterized Arithmetic Circuit
Isoparametric Routine
Branching Parsimonious Algorithm
Flat Family of Zero Dimensional Elimination Problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15847
Ver los metadatos del registro completo
id |
CONICETDig_aff40d1aba814bf819fb2347c5f05966 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15847 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Software Engineering and complexity in effective Algebraic GeometryHeintz, Joos UlrichKuijpers, BartRojas Paredes, Andres AvelinoRobust Parameterized Arithmetic CircuitIsoparametric RoutineBranching Parsimonious AlgorithmFlat Family of Zero Dimensional Elimination Problemshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1One may represent polynomials not only by their coefficients but also by arithmetic circuits which evaluate them. This idea allowed in the past fifteen years considerable complexity progress in effective polynomial equation solving. We present a circuit based computation model which captures all known symbolic elimination algorithms in effective Algebraic Geometry and exhibit a class of simple elimination problems which require exponential size circuits to be solved in this model. This implies that the known, circuit based elimination algorithms are already optimal.Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kuijpers, Bart. Hasselt University; BélgicaFil: Rojas Paredes, Andres Avelino. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15847Heintz, Joos Ulrich; Kuijpers, Bart; Rojas Paredes, Andres Avelino; Software Engineering and complexity in effective Algebraic Geometry; Elsevier Inc; Journal Of Complexity; 29; 1; 2-2013; 92-1380885-064Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2012.04.005info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0885064X1200043Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:46Zoai:ri.conicet.gov.ar:11336/15847instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:46.978CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Software Engineering and complexity in effective Algebraic Geometry |
title |
Software Engineering and complexity in effective Algebraic Geometry |
spellingShingle |
Software Engineering and complexity in effective Algebraic Geometry Heintz, Joos Ulrich Robust Parameterized Arithmetic Circuit Isoparametric Routine Branching Parsimonious Algorithm Flat Family of Zero Dimensional Elimination Problems |
title_short |
Software Engineering and complexity in effective Algebraic Geometry |
title_full |
Software Engineering and complexity in effective Algebraic Geometry |
title_fullStr |
Software Engineering and complexity in effective Algebraic Geometry |
title_full_unstemmed |
Software Engineering and complexity in effective Algebraic Geometry |
title_sort |
Software Engineering and complexity in effective Algebraic Geometry |
dc.creator.none.fl_str_mv |
Heintz, Joos Ulrich Kuijpers, Bart Rojas Paredes, Andres Avelino |
author |
Heintz, Joos Ulrich |
author_facet |
Heintz, Joos Ulrich Kuijpers, Bart Rojas Paredes, Andres Avelino |
author_role |
author |
author2 |
Kuijpers, Bart Rojas Paredes, Andres Avelino |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Robust Parameterized Arithmetic Circuit Isoparametric Routine Branching Parsimonious Algorithm Flat Family of Zero Dimensional Elimination Problems |
topic |
Robust Parameterized Arithmetic Circuit Isoparametric Routine Branching Parsimonious Algorithm Flat Family of Zero Dimensional Elimination Problems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
One may represent polynomials not only by their coefficients but also by arithmetic circuits which evaluate them. This idea allowed in the past fifteen years considerable complexity progress in effective polynomial equation solving. We present a circuit based computation model which captures all known symbolic elimination algorithms in effective Algebraic Geometry and exhibit a class of simple elimination problems which require exponential size circuits to be solved in this model. This implies that the known, circuit based elimination algorithms are already optimal. Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kuijpers, Bart. Hasselt University; Bélgica Fil: Rojas Paredes, Andres Avelino. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
One may represent polynomials not only by their coefficients but also by arithmetic circuits which evaluate them. This idea allowed in the past fifteen years considerable complexity progress in effective polynomial equation solving. We present a circuit based computation model which captures all known symbolic elimination algorithms in effective Algebraic Geometry and exhibit a class of simple elimination problems which require exponential size circuits to be solved in this model. This implies that the known, circuit based elimination algorithms are already optimal. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15847 Heintz, Joos Ulrich; Kuijpers, Bart; Rojas Paredes, Andres Avelino; Software Engineering and complexity in effective Algebraic Geometry; Elsevier Inc; Journal Of Complexity; 29; 1; 2-2013; 92-138 0885-064X |
url |
http://hdl.handle.net/11336/15847 |
identifier_str_mv |
Heintz, Joos Ulrich; Kuijpers, Bart; Rojas Paredes, Andres Avelino; Software Engineering and complexity in effective Algebraic Geometry; Elsevier Inc; Journal Of Complexity; 29; 1; 2-2013; 92-138 0885-064X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2012.04.005 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0885064X1200043X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979971871539200 |
score |
12.993085 |