Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory

Autores
Mao, Zhongtian; Lustemberg, Pablo German; Rumptz, John R.; Ganduglia Pirovano, Maria Veronica; Campbell, Charles T.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The morphology, interfacial bonding energetics, and charge transfer of Ni clusters and nanoparticles on slightly reduced CeO2-x(111) surfaces at 100-300 K have been studied using single-crystal adsorption calorimetry (SCAC), low-energy ion scattering spectroscopy (LEIS), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and density functional theory (DFT). The initial heat of adsorption of Ni vapor decreased with the extent of pre-reduction (x) of CeO2-x(111), showing that stoichiometric ceria adsorbs Ni more strongly than oxygen vacancies. On CeO1.95(111) at 300 K, the heat dropped quickly with coverage in the first 0.1 ML, attributed to nucleation of Ni clusters on stoichiometric steps, followed by the Ni particles spreading onto less favorable terrace sites. At 100 K, the clusters nucleate on terraces due to slower diffusion. Adsorbed Ni monomers are in the +2 oxidation state, and they bind more strongly by ∼45 kJ/mol to step sites than terraces. The measured heat of adsorption versus average particle size on terraces is favorably compared to DFT calculations. The Ce 3d XPS line shape showed an increase in Ce3+/Ce4+ ratio with Ni coverage, providing the number of electrons donated to ceria per Ni atom. The charge transferred per Ni is initially large but strongly decreases with increasing cluster size for both experiments and DFT, and it shows large differences between clusters at steps versus terraces. This charge is localized on the interfacial Ni and Ce atoms in their atomic layers closest to the interface. This knowledge is crucial to understanding the nature of the active sites on the surface of Ni/CeO2 catalysts, for which metal-oxide interactions play a very important role in the activation of O-H and C-H bonds. The changes in these interactions with Ni particle size (metal loading) and the extent of reduction of ceria help to explain how previously reported catalytic activity and selectivity change with these same structural details.
Fil: Mao, Zhongtian. University of Washington; Estados Unidos
Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Catálisis y Petroleoquímica; España
Fil: Rumptz, John R.. University of Washington; Estados Unidos
Fil: Ganduglia Pirovano, Maria Veronica. Consejo Superior de Investigaciones Científicas. Instituto de Catálisis y Petroleoquímica; España
Fil: Campbell, Charles T.. University of Washington; Estados Unidos
Materia
CALORIMETRY
CATALYST
DFT
METAL ADSORPTION
NANOPARTICLES
NICKEL/CERIA
SIZE EFFECT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/144161

id CONICETDig_afcd32fe86e25a8fa0b0bff0e7671b85
oai_identifier_str oai:ri.conicet.gov.ar:11336/144161
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional TheoryMao, ZhongtianLustemberg, Pablo GermanRumptz, John R.Ganduglia Pirovano, Maria VeronicaCampbell, Charles T.CALORIMETRYCATALYSTDFTMETAL ADSORPTIONNANOPARTICLESNICKEL/CERIASIZE EFFECThttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The morphology, interfacial bonding energetics, and charge transfer of Ni clusters and nanoparticles on slightly reduced CeO2-x(111) surfaces at 100-300 K have been studied using single-crystal adsorption calorimetry (SCAC), low-energy ion scattering spectroscopy (LEIS), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and density functional theory (DFT). The initial heat of adsorption of Ni vapor decreased with the extent of pre-reduction (x) of CeO2-x(111), showing that stoichiometric ceria adsorbs Ni more strongly than oxygen vacancies. On CeO1.95(111) at 300 K, the heat dropped quickly with coverage in the first 0.1 ML, attributed to nucleation of Ni clusters on stoichiometric steps, followed by the Ni particles spreading onto less favorable terrace sites. At 100 K, the clusters nucleate on terraces due to slower diffusion. Adsorbed Ni monomers are in the +2 oxidation state, and they bind more strongly by ∼45 kJ/mol to step sites than terraces. The measured heat of adsorption versus average particle size on terraces is favorably compared to DFT calculations. The Ce 3d XPS line shape showed an increase in Ce3+/Ce4+ ratio with Ni coverage, providing the number of electrons donated to ceria per Ni atom. The charge transferred per Ni is initially large but strongly decreases with increasing cluster size for both experiments and DFT, and it shows large differences between clusters at steps versus terraces. This charge is localized on the interfacial Ni and Ce atoms in their atomic layers closest to the interface. This knowledge is crucial to understanding the nature of the active sites on the surface of Ni/CeO2 catalysts, for which metal-oxide interactions play a very important role in the activation of O-H and C-H bonds. The changes in these interactions with Ni particle size (metal loading) and the extent of reduction of ceria help to explain how previously reported catalytic activity and selectivity change with these same structural details.Fil: Mao, Zhongtian. University of Washington; Estados UnidosFil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Catálisis y Petroleoquímica; EspañaFil: Rumptz, John R.. University of Washington; Estados UnidosFil: Ganduglia Pirovano, Maria Veronica. Consejo Superior de Investigaciones Científicas. Instituto de Catálisis y Petroleoquímica; EspañaFil: Campbell, Charles T.. University of Washington; Estados UnidosAmerican Chemical Society2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144161Mao, Zhongtian; Lustemberg, Pablo German; Rumptz, John R.; Ganduglia Pirovano, Maria Veronica; Campbell, Charles T.; Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory; American Chemical Society; ACS Catalysis; 10; 9; 5-2020; 5101-51142155-54352155-5435CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.0c00333info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.0c00333info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:36Zoai:ri.conicet.gov.ar:11336/144161instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:36.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory
title Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory
spellingShingle Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory
Mao, Zhongtian
CALORIMETRY
CATALYST
DFT
METAL ADSORPTION
NANOPARTICLES
NICKEL/CERIA
SIZE EFFECT
title_short Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory
title_full Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory
title_fullStr Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory
title_full_unstemmed Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory
title_sort Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory
dc.creator.none.fl_str_mv Mao, Zhongtian
Lustemberg, Pablo German
Rumptz, John R.
Ganduglia Pirovano, Maria Veronica
Campbell, Charles T.
author Mao, Zhongtian
author_facet Mao, Zhongtian
Lustemberg, Pablo German
Rumptz, John R.
Ganduglia Pirovano, Maria Veronica
Campbell, Charles T.
author_role author
author2 Lustemberg, Pablo German
Rumptz, John R.
Ganduglia Pirovano, Maria Veronica
Campbell, Charles T.
author2_role author
author
author
author
dc.subject.none.fl_str_mv CALORIMETRY
CATALYST
DFT
METAL ADSORPTION
NANOPARTICLES
NICKEL/CERIA
SIZE EFFECT
topic CALORIMETRY
CATALYST
DFT
METAL ADSORPTION
NANOPARTICLES
NICKEL/CERIA
SIZE EFFECT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The morphology, interfacial bonding energetics, and charge transfer of Ni clusters and nanoparticles on slightly reduced CeO2-x(111) surfaces at 100-300 K have been studied using single-crystal adsorption calorimetry (SCAC), low-energy ion scattering spectroscopy (LEIS), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and density functional theory (DFT). The initial heat of adsorption of Ni vapor decreased with the extent of pre-reduction (x) of CeO2-x(111), showing that stoichiometric ceria adsorbs Ni more strongly than oxygen vacancies. On CeO1.95(111) at 300 K, the heat dropped quickly with coverage in the first 0.1 ML, attributed to nucleation of Ni clusters on stoichiometric steps, followed by the Ni particles spreading onto less favorable terrace sites. At 100 K, the clusters nucleate on terraces due to slower diffusion. Adsorbed Ni monomers are in the +2 oxidation state, and they bind more strongly by ∼45 kJ/mol to step sites than terraces. The measured heat of adsorption versus average particle size on terraces is favorably compared to DFT calculations. The Ce 3d XPS line shape showed an increase in Ce3+/Ce4+ ratio with Ni coverage, providing the number of electrons donated to ceria per Ni atom. The charge transferred per Ni is initially large but strongly decreases with increasing cluster size for both experiments and DFT, and it shows large differences between clusters at steps versus terraces. This charge is localized on the interfacial Ni and Ce atoms in their atomic layers closest to the interface. This knowledge is crucial to understanding the nature of the active sites on the surface of Ni/CeO2 catalysts, for which metal-oxide interactions play a very important role in the activation of O-H and C-H bonds. The changes in these interactions with Ni particle size (metal loading) and the extent of reduction of ceria help to explain how previously reported catalytic activity and selectivity change with these same structural details.
Fil: Mao, Zhongtian. University of Washington; Estados Unidos
Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Catálisis y Petroleoquímica; España
Fil: Rumptz, John R.. University of Washington; Estados Unidos
Fil: Ganduglia Pirovano, Maria Veronica. Consejo Superior de Investigaciones Científicas. Instituto de Catálisis y Petroleoquímica; España
Fil: Campbell, Charles T.. University of Washington; Estados Unidos
description The morphology, interfacial bonding energetics, and charge transfer of Ni clusters and nanoparticles on slightly reduced CeO2-x(111) surfaces at 100-300 K have been studied using single-crystal adsorption calorimetry (SCAC), low-energy ion scattering spectroscopy (LEIS), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and density functional theory (DFT). The initial heat of adsorption of Ni vapor decreased with the extent of pre-reduction (x) of CeO2-x(111), showing that stoichiometric ceria adsorbs Ni more strongly than oxygen vacancies. On CeO1.95(111) at 300 K, the heat dropped quickly with coverage in the first 0.1 ML, attributed to nucleation of Ni clusters on stoichiometric steps, followed by the Ni particles spreading onto less favorable terrace sites. At 100 K, the clusters nucleate on terraces due to slower diffusion. Adsorbed Ni monomers are in the +2 oxidation state, and they bind more strongly by ∼45 kJ/mol to step sites than terraces. The measured heat of adsorption versus average particle size on terraces is favorably compared to DFT calculations. The Ce 3d XPS line shape showed an increase in Ce3+/Ce4+ ratio with Ni coverage, providing the number of electrons donated to ceria per Ni atom. The charge transferred per Ni is initially large but strongly decreases with increasing cluster size for both experiments and DFT, and it shows large differences between clusters at steps versus terraces. This charge is localized on the interfacial Ni and Ce atoms in their atomic layers closest to the interface. This knowledge is crucial to understanding the nature of the active sites on the surface of Ni/CeO2 catalysts, for which metal-oxide interactions play a very important role in the activation of O-H and C-H bonds. The changes in these interactions with Ni particle size (metal loading) and the extent of reduction of ceria help to explain how previously reported catalytic activity and selectivity change with these same structural details.
publishDate 2020
dc.date.none.fl_str_mv 2020-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/144161
Mao, Zhongtian; Lustemberg, Pablo German; Rumptz, John R.; Ganduglia Pirovano, Maria Veronica; Campbell, Charles T.; Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory; American Chemical Society; ACS Catalysis; 10; 9; 5-2020; 5101-5114
2155-5435
2155-5435
CONICET Digital
CONICET
url http://hdl.handle.net/11336/144161
identifier_str_mv Mao, Zhongtian; Lustemberg, Pablo German; Rumptz, John R.; Ganduglia Pirovano, Maria Veronica; Campbell, Charles T.; Ni Nanoparticles on CeO 2 (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory; American Chemical Society; ACS Catalysis; 10; 9; 5-2020; 5101-5114
2155-5435
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.0c00333
info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.0c00333
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268742653837312
score 13.13397