Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions

Autores
Salcedo, Agustín; Lustemberg, Pablo German; Rui, Ning; Palomino, Robert M.; Liu, Zongyuan; Nemsak, Slavomir; Senanayake, Sanjaya D.; Rodriguez, José A.; Ganduglia Pirovano, M. Verónica; Irigoyen, Beatriz del Luján
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH4/H2O gas mixtures react with Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production.
Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina
Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas; España
Fil: Rui, Ning. Brookhaven National Laboratory; Estados Unidos
Fil: Palomino, Robert M.. Brookhaven National Laboratory; Estados Unidos
Fil: Liu, Zongyuan. Brookhaven National Laboratory; Estados Unidos
Fil: Nemsak, Slavomir. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Senanayake, Sanjaya D.. Brookhaven National Laboratory; Estados Unidos
Fil: Rodriguez, José A.. Brookhaven National Laboratory; Estados Unidos
Fil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones Científicas; España
Fil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina
Materia
CERIA
DFT
HYDROGEN
METHANE
NICKEL
STEAM REFORMING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/212157

id CONICETDig_5f2e21522f69809be0a22f4339012441
oai_identifier_str oai:ri.conicet.gov.ar:11336/212157
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support InteractionsSalcedo, AgustínLustemberg, Pablo GermanRui, NingPalomino, Robert M.Liu, ZongyuanNemsak, SlavomirSenanayake, Sanjaya D.Rodriguez, José A.Ganduglia Pirovano, M. VerónicaIrigoyen, Beatriz del LujánCERIADFTHYDROGENMETHANENICKELSTEAM REFORMINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH4/H2O gas mixtures react with Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production.Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; ArgentinaFil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Rui, Ning. Brookhaven National Laboratory; Estados UnidosFil: Palomino, Robert M.. Brookhaven National Laboratory; Estados UnidosFil: Liu, Zongyuan. Brookhaven National Laboratory; Estados UnidosFil: Nemsak, Slavomir. Lawrence Berkeley National Laboratory; Estados UnidosFil: Senanayake, Sanjaya D.. Brookhaven National Laboratory; Estados UnidosFil: Rodriguez, José A.. Brookhaven National Laboratory; Estados UnidosFil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones Científicas; EspañaFil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; ArgentinaAmerican Chemical Society2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212157Salcedo, Agustín; Lustemberg, Pablo German; Rui, Ning; Palomino, Robert M.; Liu, Zongyuan; et al.; Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions; American Chemical Society; ACS Catalysis; 11; 13; 6-2021; 8327-83372155-5435CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.1c01604info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.1c01604info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:29Zoai:ri.conicet.gov.ar:11336/212157instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:29.634CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions
title Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions
spellingShingle Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions
Salcedo, Agustín
CERIA
DFT
HYDROGEN
METHANE
NICKEL
STEAM REFORMING
title_short Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions
title_full Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions
title_fullStr Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions
title_full_unstemmed Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions
title_sort Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions
dc.creator.none.fl_str_mv Salcedo, Agustín
Lustemberg, Pablo German
Rui, Ning
Palomino, Robert M.
Liu, Zongyuan
Nemsak, Slavomir
Senanayake, Sanjaya D.
Rodriguez, José A.
Ganduglia Pirovano, M. Verónica
Irigoyen, Beatriz del Luján
author Salcedo, Agustín
author_facet Salcedo, Agustín
Lustemberg, Pablo German
Rui, Ning
Palomino, Robert M.
Liu, Zongyuan
Nemsak, Slavomir
Senanayake, Sanjaya D.
Rodriguez, José A.
Ganduglia Pirovano, M. Verónica
Irigoyen, Beatriz del Luján
author_role author
author2 Lustemberg, Pablo German
Rui, Ning
Palomino, Robert M.
Liu, Zongyuan
Nemsak, Slavomir
Senanayake, Sanjaya D.
Rodriguez, José A.
Ganduglia Pirovano, M. Verónica
Irigoyen, Beatriz del Luján
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CERIA
DFT
HYDROGEN
METHANE
NICKEL
STEAM REFORMING
topic CERIA
DFT
HYDROGEN
METHANE
NICKEL
STEAM REFORMING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH4/H2O gas mixtures react with Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production.
Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina
Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas; España
Fil: Rui, Ning. Brookhaven National Laboratory; Estados Unidos
Fil: Palomino, Robert M.. Brookhaven National Laboratory; Estados Unidos
Fil: Liu, Zongyuan. Brookhaven National Laboratory; Estados Unidos
Fil: Nemsak, Slavomir. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Senanayake, Sanjaya D.. Brookhaven National Laboratory; Estados Unidos
Fil: Rodriguez, José A.. Brookhaven National Laboratory; Estados Unidos
Fil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones Científicas; España
Fil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina
description Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH4/H2O gas mixtures react with Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production.
publishDate 2021
dc.date.none.fl_str_mv 2021-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/212157
Salcedo, Agustín; Lustemberg, Pablo German; Rui, Ning; Palomino, Robert M.; Liu, Zongyuan; et al.; Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions; American Chemical Society; ACS Catalysis; 11; 13; 6-2021; 8327-8337
2155-5435
CONICET Digital
CONICET
url http://hdl.handle.net/11336/212157
identifier_str_mv Salcedo, Agustín; Lustemberg, Pablo German; Rui, Ning; Palomino, Robert M.; Liu, Zongyuan; et al.; Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions; American Chemical Society; ACS Catalysis; 11; 13; 6-2021; 8327-8337
2155-5435
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.1c01604
info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.1c01604
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613249126891520
score 13.070432