Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions
- Autores
- Salcedo, Agustín; Lustemberg, Pablo German; Rui, Ning; Palomino, Robert M.; Liu, Zongyuan; Nemsak, Slavomir; Senanayake, Sanjaya D.; Rodriguez, José A.; Ganduglia Pirovano, M. Verónica; Irigoyen, Beatriz del Luján
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH4/H2O gas mixtures react with Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production.
Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina
Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas; España
Fil: Rui, Ning. Brookhaven National Laboratory; Estados Unidos
Fil: Palomino, Robert M.. Brookhaven National Laboratory; Estados Unidos
Fil: Liu, Zongyuan. Brookhaven National Laboratory; Estados Unidos
Fil: Nemsak, Slavomir. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Senanayake, Sanjaya D.. Brookhaven National Laboratory; Estados Unidos
Fil: Rodriguez, José A.. Brookhaven National Laboratory; Estados Unidos
Fil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones Científicas; España
Fil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina - Materia
-
CERIA
DFT
HYDROGEN
METHANE
NICKEL
STEAM REFORMING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212157
Ver los metadatos del registro completo
id |
CONICETDig_5f2e21522f69809be0a22f4339012441 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212157 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support InteractionsSalcedo, AgustínLustemberg, Pablo GermanRui, NingPalomino, Robert M.Liu, ZongyuanNemsak, SlavomirSenanayake, Sanjaya D.Rodriguez, José A.Ganduglia Pirovano, M. VerónicaIrigoyen, Beatriz del LujánCERIADFTHYDROGENMETHANENICKELSTEAM REFORMINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH4/H2O gas mixtures react with Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production.Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; ArgentinaFil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Rui, Ning. Brookhaven National Laboratory; Estados UnidosFil: Palomino, Robert M.. Brookhaven National Laboratory; Estados UnidosFil: Liu, Zongyuan. Brookhaven National Laboratory; Estados UnidosFil: Nemsak, Slavomir. Lawrence Berkeley National Laboratory; Estados UnidosFil: Senanayake, Sanjaya D.. Brookhaven National Laboratory; Estados UnidosFil: Rodriguez, José A.. Brookhaven National Laboratory; Estados UnidosFil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones Científicas; EspañaFil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; ArgentinaAmerican Chemical Society2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212157Salcedo, Agustín; Lustemberg, Pablo German; Rui, Ning; Palomino, Robert M.; Liu, Zongyuan; et al.; Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions; American Chemical Society; ACS Catalysis; 11; 13; 6-2021; 8327-83372155-5435CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.1c01604info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.1c01604info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:29Zoai:ri.conicet.gov.ar:11336/212157instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:29.634CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions |
title |
Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions |
spellingShingle |
Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions Salcedo, Agustín CERIA DFT HYDROGEN METHANE NICKEL STEAM REFORMING |
title_short |
Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions |
title_full |
Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions |
title_fullStr |
Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions |
title_full_unstemmed |
Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions |
title_sort |
Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions |
dc.creator.none.fl_str_mv |
Salcedo, Agustín Lustemberg, Pablo German Rui, Ning Palomino, Robert M. Liu, Zongyuan Nemsak, Slavomir Senanayake, Sanjaya D. Rodriguez, José A. Ganduglia Pirovano, M. Verónica Irigoyen, Beatriz del Luján |
author |
Salcedo, Agustín |
author_facet |
Salcedo, Agustín Lustemberg, Pablo German Rui, Ning Palomino, Robert M. Liu, Zongyuan Nemsak, Slavomir Senanayake, Sanjaya D. Rodriguez, José A. Ganduglia Pirovano, M. Verónica Irigoyen, Beatriz del Luján |
author_role |
author |
author2 |
Lustemberg, Pablo German Rui, Ning Palomino, Robert M. Liu, Zongyuan Nemsak, Slavomir Senanayake, Sanjaya D. Rodriguez, José A. Ganduglia Pirovano, M. Verónica Irigoyen, Beatriz del Luján |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
CERIA DFT HYDROGEN METHANE NICKEL STEAM REFORMING |
topic |
CERIA DFT HYDROGEN METHANE NICKEL STEAM REFORMING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH4/H2O gas mixtures react with Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production. Fil: Salcedo, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Superior de Investigaciones Científicas; España Fil: Rui, Ning. Brookhaven National Laboratory; Estados Unidos Fil: Palomino, Robert M.. Brookhaven National Laboratory; Estados Unidos Fil: Liu, Zongyuan. Brookhaven National Laboratory; Estados Unidos Fil: Nemsak, Slavomir. Lawrence Berkeley National Laboratory; Estados Unidos Fil: Senanayake, Sanjaya D.. Brookhaven National Laboratory; Estados Unidos Fil: Rodriguez, José A.. Brookhaven National Laboratory; Estados Unidos Fil: Ganduglia Pirovano, M. Verónica. Consejo Superior de Investigaciones Científicas; España Fil: Irigoyen, Beatriz del Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química; Argentina |
description |
Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH4/H2O gas mixtures react with Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212157 Salcedo, Agustín; Lustemberg, Pablo German; Rui, Ning; Palomino, Robert M.; Liu, Zongyuan; et al.; Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions; American Chemical Society; ACS Catalysis; 11; 13; 6-2021; 8327-8337 2155-5435 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212157 |
identifier_str_mv |
Salcedo, Agustín; Lustemberg, Pablo German; Rui, Ning; Palomino, Robert M.; Liu, Zongyuan; et al.; Reaction Pathway for Coke-free methane steam reforming on a Ni/ CeO2Catalyst: Active Sites and the Role of Metal-Support Interactions; American Chemical Society; ACS Catalysis; 11; 13; 6-2021; 8327-8337 2155-5435 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acscatal.1c01604 info:eu-repo/semantics/altIdentifier/doi/10.1021/acscatal.1c01604 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613249126891520 |
score |
13.070432 |