Photovoltaic generation model as a function of weather variables using artificial intelligence techniques
- Autores
- Sánchez Reinoso, Carlos Roberto; Cutrera, M.; Battioni, M.; Milone, Diego Humberto; Buitrago, R. H.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The optimisation of photovoltaic systems of electricity generation involve the necesity of real data of the different variables as well as determination of their relationships. In the field of photovoltaic solar energy there is interest to predict the energy generation in terms of solar radiation and climatic parameters. For this purpose, it is needed a good sensing and measurement of these parameters. In this paper, we propose a method based on artificial intelligence techniques for obtaining the generated energy under climatic conditions during a year. In addition, we propose a model that relates short-circuit current with radiation, considering the true nonlinear behavior of the relationship between variables. The results of the proposed method using real data show its validity and usefulness in predicting the generated energy by photovoltaic modules and the search for alternative methods of measuring global radiation at low cost and reasonable error.
Fil: Sánchez Reinoso, Carlos Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Cutrera, M.. Universidad Nacional de Catamarca; Argentina
Fil: Battioni, M.. Universidad Nacional de Catamarca; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Buitrago, R. H.. Universidad Nacional de Catamarca; Argentina - Materia
-
ARTIFICIAL INTELLIGENCE
GENERATION PREDICTION
MEASUREMENTS
PHOTOVOLTAIC ENERGY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/196334
Ver los metadatos del registro completo
id |
CONICETDig_ae9af423dbf7f9fb5ea433b8222e8a59 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/196334 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Photovoltaic generation model as a function of weather variables using artificial intelligence techniquesSánchez Reinoso, Carlos RobertoCutrera, M.Battioni, M.Milone, Diego HumbertoBuitrago, R. H.ARTIFICIAL INTELLIGENCEGENERATION PREDICTIONMEASUREMENTSPHOTOVOLTAIC ENERGYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The optimisation of photovoltaic systems of electricity generation involve the necesity of real data of the different variables as well as determination of their relationships. In the field of photovoltaic solar energy there is interest to predict the energy generation in terms of solar radiation and climatic parameters. For this purpose, it is needed a good sensing and measurement of these parameters. In this paper, we propose a method based on artificial intelligence techniques for obtaining the generated energy under climatic conditions during a year. In addition, we propose a model that relates short-circuit current with radiation, considering the true nonlinear behavior of the relationship between variables. The results of the proposed method using real data show its validity and usefulness in predicting the generated energy by photovoltaic modules and the search for alternative methods of measuring global radiation at low cost and reasonable error.Fil: Sánchez Reinoso, Carlos Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Cutrera, M.. Universidad Nacional de Catamarca; ArgentinaFil: Battioni, M.. Universidad Nacional de Catamarca; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Buitrago, R. H.. Universidad Nacional de Catamarca; ArgentinaPergamon-Elsevier Science Ltd2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196334Sánchez Reinoso, Carlos Roberto; Cutrera, M.; Battioni, M.; Milone, Diego Humberto; Buitrago, R. H.; Photovoltaic generation model as a function of weather variables using artificial intelligence techniques; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 37; 19; 10-2012; 14781-147850360-3199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319911027741info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2011.12.081info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:24Zoai:ri.conicet.gov.ar:11336/196334instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:25.278CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Photovoltaic generation model as a function of weather variables using artificial intelligence techniques |
title |
Photovoltaic generation model as a function of weather variables using artificial intelligence techniques |
spellingShingle |
Photovoltaic generation model as a function of weather variables using artificial intelligence techniques Sánchez Reinoso, Carlos Roberto ARTIFICIAL INTELLIGENCE GENERATION PREDICTION MEASUREMENTS PHOTOVOLTAIC ENERGY |
title_short |
Photovoltaic generation model as a function of weather variables using artificial intelligence techniques |
title_full |
Photovoltaic generation model as a function of weather variables using artificial intelligence techniques |
title_fullStr |
Photovoltaic generation model as a function of weather variables using artificial intelligence techniques |
title_full_unstemmed |
Photovoltaic generation model as a function of weather variables using artificial intelligence techniques |
title_sort |
Photovoltaic generation model as a function of weather variables using artificial intelligence techniques |
dc.creator.none.fl_str_mv |
Sánchez Reinoso, Carlos Roberto Cutrera, M. Battioni, M. Milone, Diego Humberto Buitrago, R. H. |
author |
Sánchez Reinoso, Carlos Roberto |
author_facet |
Sánchez Reinoso, Carlos Roberto Cutrera, M. Battioni, M. Milone, Diego Humberto Buitrago, R. H. |
author_role |
author |
author2 |
Cutrera, M. Battioni, M. Milone, Diego Humberto Buitrago, R. H. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL INTELLIGENCE GENERATION PREDICTION MEASUREMENTS PHOTOVOLTAIC ENERGY |
topic |
ARTIFICIAL INTELLIGENCE GENERATION PREDICTION MEASUREMENTS PHOTOVOLTAIC ENERGY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The optimisation of photovoltaic systems of electricity generation involve the necesity of real data of the different variables as well as determination of their relationships. In the field of photovoltaic solar energy there is interest to predict the energy generation in terms of solar radiation and climatic parameters. For this purpose, it is needed a good sensing and measurement of these parameters. In this paper, we propose a method based on artificial intelligence techniques for obtaining the generated energy under climatic conditions during a year. In addition, we propose a model that relates short-circuit current with radiation, considering the true nonlinear behavior of the relationship between variables. The results of the proposed method using real data show its validity and usefulness in predicting the generated energy by photovoltaic modules and the search for alternative methods of measuring global radiation at low cost and reasonable error. Fil: Sánchez Reinoso, Carlos Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Cutrera, M.. Universidad Nacional de Catamarca; Argentina Fil: Battioni, M.. Universidad Nacional de Catamarca; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Buitrago, R. H.. Universidad Nacional de Catamarca; Argentina |
description |
The optimisation of photovoltaic systems of electricity generation involve the necesity of real data of the different variables as well as determination of their relationships. In the field of photovoltaic solar energy there is interest to predict the energy generation in terms of solar radiation and climatic parameters. For this purpose, it is needed a good sensing and measurement of these parameters. In this paper, we propose a method based on artificial intelligence techniques for obtaining the generated energy under climatic conditions during a year. In addition, we propose a model that relates short-circuit current with radiation, considering the true nonlinear behavior of the relationship between variables. The results of the proposed method using real data show its validity and usefulness in predicting the generated energy by photovoltaic modules and the search for alternative methods of measuring global radiation at low cost and reasonable error. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/196334 Sánchez Reinoso, Carlos Roberto; Cutrera, M.; Battioni, M.; Milone, Diego Humberto; Buitrago, R. H.; Photovoltaic generation model as a function of weather variables using artificial intelligence techniques; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 37; 19; 10-2012; 14781-14785 0360-3199 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/196334 |
identifier_str_mv |
Sánchez Reinoso, Carlos Roberto; Cutrera, M.; Battioni, M.; Milone, Diego Humberto; Buitrago, R. H.; Photovoltaic generation model as a function of weather variables using artificial intelligence techniques; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 37; 19; 10-2012; 14781-14785 0360-3199 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319911027741 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2011.12.081 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614493754097664 |
score |
13.070432 |