Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”

Autores
Fernández, Francisco Marcelo
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this Comment we argue that the so-called He-Laplace variational iteration method merely yields the Taylor series of the solution to a partial differential equation. The straightforward application of the textbook power series method is far simpler and more efficient because it gives us closed-form analytic recurrence relations for the expansion coefficients. We also argue that the time series of the solution is unsuitable for the analysis of nonlinear problems in chemical kinetics and population dynamics which require expressions valid for sufficiently large time. Besides, Nadeem and He (J Math Chem 59:1234–1245, 2021) applied the approach to some tailor-made toy problems with known exact solutions that do not appear to exhibit any physical application whatsoever.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Materia
VARIATIONAL ITERATION METHOD
TAYLOR SERIES
TEXTBOOK POWER-SEREIES METHOD
CHEMICAL KINETICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/204748

id CONICETDig_ae88febf4497466c590f52b33f01231d
oai_identifier_str oai:ri.conicet.gov.ar:11336/204748
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”Fernández, Francisco MarceloVARIATIONAL ITERATION METHODTAYLOR SERIESTEXTBOOK POWER-SEREIES METHODCHEMICAL KINETICShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this Comment we argue that the so-called He-Laplace variational iteration method merely yields the Taylor series of the solution to a partial differential equation. The straightforward application of the textbook power series method is far simpler and more efficient because it gives us closed-form analytic recurrence relations for the expansion coefficients. We also argue that the time series of the solution is unsuitable for the analysis of nonlinear problems in chemical kinetics and population dynamics which require expressions valid for sufficiently large time. Besides, Nadeem and He (J Math Chem 59:1234–1245, 2021) applied the approach to some tailor-made toy problems with known exact solutions that do not appear to exhibit any physical application whatsoever.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaSpringer2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204748Fernández, Francisco Marcelo; Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”; Springer; Journal of Mathematical Chemistry; 60; 1; 1-2022; 255-2590259-9791CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-021-01297-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10910-021-01297-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:03Zoai:ri.conicet.gov.ar:11336/204748instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:03.747CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”
title Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”
spellingShingle Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”
Fernández, Francisco Marcelo
VARIATIONAL ITERATION METHOD
TAYLOR SERIES
TEXTBOOK POWER-SEREIES METHOD
CHEMICAL KINETICS
title_short Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”
title_full Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”
title_fullStr Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”
title_full_unstemmed Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”
title_sort Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
author_role author
dc.subject.none.fl_str_mv VARIATIONAL ITERATION METHOD
TAYLOR SERIES
TEXTBOOK POWER-SEREIES METHOD
CHEMICAL KINETICS
topic VARIATIONAL ITERATION METHOD
TAYLOR SERIES
TEXTBOOK POWER-SEREIES METHOD
CHEMICAL KINETICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this Comment we argue that the so-called He-Laplace variational iteration method merely yields the Taylor series of the solution to a partial differential equation. The straightforward application of the textbook power series method is far simpler and more efficient because it gives us closed-form analytic recurrence relations for the expansion coefficients. We also argue that the time series of the solution is unsuitable for the analysis of nonlinear problems in chemical kinetics and population dynamics which require expressions valid for sufficiently large time. Besides, Nadeem and He (J Math Chem 59:1234–1245, 2021) applied the approach to some tailor-made toy problems with known exact solutions that do not appear to exhibit any physical application whatsoever.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
description In this Comment we argue that the so-called He-Laplace variational iteration method merely yields the Taylor series of the solution to a partial differential equation. The straightforward application of the textbook power series method is far simpler and more efficient because it gives us closed-form analytic recurrence relations for the expansion coefficients. We also argue that the time series of the solution is unsuitable for the analysis of nonlinear problems in chemical kinetics and population dynamics which require expressions valid for sufficiently large time. Besides, Nadeem and He (J Math Chem 59:1234–1245, 2021) applied the approach to some tailor-made toy problems with known exact solutions that do not appear to exhibit any physical application whatsoever.
publishDate 2022
dc.date.none.fl_str_mv 2022-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/204748
Fernández, Francisco Marcelo; Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”; Springer; Journal of Mathematical Chemistry; 60; 1; 1-2022; 255-259
0259-9791
CONICET Digital
CONICET
url http://hdl.handle.net/11336/204748
identifier_str_mv Fernández, Francisco Marcelo; Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”; Springer; Journal of Mathematical Chemistry; 60; 1; 1-2022; 255-259
0259-9791
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-021-01297-5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10910-021-01297-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613946245382144
score 13.070432