On Artificial Gene Regulatory Networks
- Autores
- Carballido, Jessica Andrea; Ponzoni, Ignacio
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gene regulatory networks (GRNs) represent dependencies between genes and their products during protein synthesis at the molecular level. At the present there exist many inference methods that infer GRNs form observed data. However, gene expression data sets have in general considerable noise that make understanding and learning even simple regulatory patterns difficult. Also, there is no well-known method to test the accuracy of inferred GRNs. Given these drawbacks, characterizing the effectiveness of different techniques to uncover gene networks remains a challenge. The development of artificial GRNs with known biological features of expression complexity, diversity and interconnectivities provides a more controlled means of investigating the appropriateness of those techniques. In this work we introduce this problem in terms of machine learning and present a review of the main formalisms that have been used to build artificial GRNs.
Fil: Carballido, Jessica Andrea. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur; Argentina - Materia
-
Gene Regulatory Networks
Artificial Grns
Bioinformatics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43315
Ver los metadatos del registro completo
id |
CONICETDig_7a376bcbbdad79de64e983c0e371f228 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43315 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Artificial Gene Regulatory NetworksCarballido, Jessica AndreaPonzoni, IgnacioGene Regulatory NetworksArtificial GrnsBioinformaticshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Gene regulatory networks (GRNs) represent dependencies between genes and their products during protein synthesis at the molecular level. At the present there exist many inference methods that infer GRNs form observed data. However, gene expression data sets have in general considerable noise that make understanding and learning even simple regulatory patterns difficult. Also, there is no well-known method to test the accuracy of inferred GRNs. Given these drawbacks, characterizing the effectiveness of different techniques to uncover gene networks remains a challenge. The development of artificial GRNs with known biological features of expression complexity, diversity and interconnectivities provides a more controlled means of investigating the appropriateness of those techniques. In this work we introduce this problem in terms of machine learning and present a review of the main formalisms that have been used to build artificial GRNs.Fil: Carballido, Jessica Andrea. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur; ArgentinaSociedad Argentina de Informática E Investigación Operativa2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43315Carballido, Jessica Andrea; Ponzoni, Ignacio; On Artificial Gene Regulatory Networks; Sociedad Argentina de Informática E Investigación Operativa; SADIO Electronic Journal of Informatic and Operation Research; 8; 1; 12-2008; 25-341514-6774CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sadio.org.ar/wp-content/uploads/2016/04/EJS_08_Paper_3.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:11Zoai:ri.conicet.gov.ar:11336/43315instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:11.388CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Artificial Gene Regulatory Networks |
title |
On Artificial Gene Regulatory Networks |
spellingShingle |
On Artificial Gene Regulatory Networks Carballido, Jessica Andrea Gene Regulatory Networks Artificial Grns Bioinformatics |
title_short |
On Artificial Gene Regulatory Networks |
title_full |
On Artificial Gene Regulatory Networks |
title_fullStr |
On Artificial Gene Regulatory Networks |
title_full_unstemmed |
On Artificial Gene Regulatory Networks |
title_sort |
On Artificial Gene Regulatory Networks |
dc.creator.none.fl_str_mv |
Carballido, Jessica Andrea Ponzoni, Ignacio |
author |
Carballido, Jessica Andrea |
author_facet |
Carballido, Jessica Andrea Ponzoni, Ignacio |
author_role |
author |
author2 |
Ponzoni, Ignacio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Gene Regulatory Networks Artificial Grns Bioinformatics |
topic |
Gene Regulatory Networks Artificial Grns Bioinformatics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Gene regulatory networks (GRNs) represent dependencies between genes and their products during protein synthesis at the molecular level. At the present there exist many inference methods that infer GRNs form observed data. However, gene expression data sets have in general considerable noise that make understanding and learning even simple regulatory patterns difficult. Also, there is no well-known method to test the accuracy of inferred GRNs. Given these drawbacks, characterizing the effectiveness of different techniques to uncover gene networks remains a challenge. The development of artificial GRNs with known biological features of expression complexity, diversity and interconnectivities provides a more controlled means of investigating the appropriateness of those techniques. In this work we introduce this problem in terms of machine learning and present a review of the main formalisms that have been used to build artificial GRNs. Fil: Carballido, Jessica Andrea. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur; Argentina |
description |
Gene regulatory networks (GRNs) represent dependencies between genes and their products during protein synthesis at the molecular level. At the present there exist many inference methods that infer GRNs form observed data. However, gene expression data sets have in general considerable noise that make understanding and learning even simple regulatory patterns difficult. Also, there is no well-known method to test the accuracy of inferred GRNs. Given these drawbacks, characterizing the effectiveness of different techniques to uncover gene networks remains a challenge. The development of artificial GRNs with known biological features of expression complexity, diversity and interconnectivities provides a more controlled means of investigating the appropriateness of those techniques. In this work we introduce this problem in terms of machine learning and present a review of the main formalisms that have been used to build artificial GRNs. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43315 Carballido, Jessica Andrea; Ponzoni, Ignacio; On Artificial Gene Regulatory Networks; Sociedad Argentina de Informática E Investigación Operativa; SADIO Electronic Journal of Informatic and Operation Research; 8; 1; 12-2008; 25-34 1514-6774 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43315 |
identifier_str_mv |
Carballido, Jessica Andrea; Ponzoni, Ignacio; On Artificial Gene Regulatory Networks; Sociedad Argentina de Informática E Investigación Operativa; SADIO Electronic Journal of Informatic and Operation Research; 8; 1; 12-2008; 25-34 1514-6774 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sadio.org.ar/wp-content/uploads/2016/04/EJS_08_Paper_3.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Argentina de Informática E Investigación Operativa |
publisher.none.fl_str_mv |
Sociedad Argentina de Informática E Investigación Operativa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980315836973056 |
score |
13.004268 |