Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process
- Autores
- Gamboa, Juliana; Campañone, Laura Analia
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In the present work, supervised machine learning (ML) algorithms, k-NN and SVM, were applied to classify strawberry samples during a microwave-assisted drying process. A dataset of 1150 strawberry records containinginformation about images of two pre-treatments types (fresh, FR and osmotically pre-treated, OD), three ranges of drying times (short <40 min; intermediate: 40-70 min and long> 70 min) and three physical characteristics previously selected (shrinkage, brightness and saturation) was used to perform the ML classifiers. The k-NN and SVM models led to good accuracy values, 0.94 for sample type and 0.90 for drying time categories. Since colour and morphological changes are related to changes in the product quality, these results are useful to evaluate the losses of nutritional and sensorialproperties taking place during the in-line processing of strawberries, by means of a non-invasive monitoring technique.
Fil: Gamboa, Juliana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina
Fil: Campañone, Laura Analia. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina
VIII Congreso de Matemática Aplicada, Computacional e Industrial
Santa Fé
Argentina
Asociación Argentina de Matemática Aplicada, Computacional e Industrial
Universidad Nacional de La Plata - Materia
-
MACHINE LEARNING
NON-INVASIVE FOOD QUALITY MONITORING
CLASSIFICATION ALGORITHMS
MICROWAVES ASSISTED DRYING
STRAWBERRY
DIGITAL IMAGE ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/200986
Ver los metadatos del registro completo
id |
CONICETDig_acc6c1bff6448a92e07374180b1b6fbf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/200986 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying processGamboa, JulianaCampañone, Laura AnaliaMACHINE LEARNINGNON-INVASIVE FOOD QUALITY MONITORINGCLASSIFICATION ALGORITHMSMICROWAVES ASSISTED DRYINGSTRAWBERRYDIGITAL IMAGE ANALYSIShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the present work, supervised machine learning (ML) algorithms, k-NN and SVM, were applied to classify strawberry samples during a microwave-assisted drying process. A dataset of 1150 strawberry records containinginformation about images of two pre-treatments types (fresh, FR and osmotically pre-treated, OD), three ranges of drying times (short <40 min; intermediate: 40-70 min and long> 70 min) and three physical characteristics previously selected (shrinkage, brightness and saturation) was used to perform the ML classifiers. The k-NN and SVM models led to good accuracy values, 0.94 for sample type and 0.90 for drying time categories. Since colour and morphological changes are related to changes in the product quality, these results are useful to evaluate the losses of nutritional and sensorialproperties taking place during the in-line processing of strawberries, by means of a non-invasive monitoring technique.Fil: Gamboa, Juliana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Campañone, Laura Analia. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaVIII Congreso de Matemática Aplicada, Computacional e IndustrialSanta FéArgentinaAsociación Argentina de Matemática Aplicada, Computacional e IndustrialUniversidad Nacional de La PlataAsociación Argentina de Matemática Aplicada, Computacional e Industrial2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/200986Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process; VIII Congreso de Matemática Aplicada, Computacional e Industrial; Santa Fé; Argentina; 2021; 407-410CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://asamaci.org.ar/revista-maci/info:eu-repo/semantics/altIdentifier/url/https://asamaci.org.ar/maci2021/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:45Zoai:ri.conicet.gov.ar:11336/200986instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:45.904CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process |
title |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process |
spellingShingle |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process Gamboa, Juliana MACHINE LEARNING NON-INVASIVE FOOD QUALITY MONITORING CLASSIFICATION ALGORITHMS MICROWAVES ASSISTED DRYING STRAWBERRY DIGITAL IMAGE ANALYSIS |
title_short |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process |
title_full |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process |
title_fullStr |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process |
title_full_unstemmed |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process |
title_sort |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process |
dc.creator.none.fl_str_mv |
Gamboa, Juliana Campañone, Laura Analia |
author |
Gamboa, Juliana |
author_facet |
Gamboa, Juliana Campañone, Laura Analia |
author_role |
author |
author2 |
Campañone, Laura Analia |
author2_role |
author |
dc.subject.none.fl_str_mv |
MACHINE LEARNING NON-INVASIVE FOOD QUALITY MONITORING CLASSIFICATION ALGORITHMS MICROWAVES ASSISTED DRYING STRAWBERRY DIGITAL IMAGE ANALYSIS |
topic |
MACHINE LEARNING NON-INVASIVE FOOD QUALITY MONITORING CLASSIFICATION ALGORITHMS MICROWAVES ASSISTED DRYING STRAWBERRY DIGITAL IMAGE ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the present work, supervised machine learning (ML) algorithms, k-NN and SVM, were applied to classify strawberry samples during a microwave-assisted drying process. A dataset of 1150 strawberry records containinginformation about images of two pre-treatments types (fresh, FR and osmotically pre-treated, OD), three ranges of drying times (short <40 min; intermediate: 40-70 min and long> 70 min) and three physical characteristics previously selected (shrinkage, brightness and saturation) was used to perform the ML classifiers. The k-NN and SVM models led to good accuracy values, 0.94 for sample type and 0.90 for drying time categories. Since colour and morphological changes are related to changes in the product quality, these results are useful to evaluate the losses of nutritional and sensorialproperties taking place during the in-line processing of strawberries, by means of a non-invasive monitoring technique. Fil: Gamboa, Juliana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina Fil: Campañone, Laura Analia. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina VIII Congreso de Matemática Aplicada, Computacional e Industrial Santa Fé Argentina Asociación Argentina de Matemática Aplicada, Computacional e Industrial Universidad Nacional de La Plata |
description |
In the present work, supervised machine learning (ML) algorithms, k-NN and SVM, were applied to classify strawberry samples during a microwave-assisted drying process. A dataset of 1150 strawberry records containinginformation about images of two pre-treatments types (fresh, FR and osmotically pre-treated, OD), three ranges of drying times (short <40 min; intermediate: 40-70 min and long> 70 min) and three physical characteristics previously selected (shrinkage, brightness and saturation) was used to perform the ML classifiers. The k-NN and SVM models led to good accuracy values, 0.94 for sample type and 0.90 for drying time categories. Since colour and morphological changes are related to changes in the product quality, these results are useful to evaluate the losses of nutritional and sensorialproperties taking place during the in-line processing of strawberries, by means of a non-invasive monitoring technique. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/200986 Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process; VIII Congreso de Matemática Aplicada, Computacional e Industrial; Santa Fé; Argentina; 2021; 407-410 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/200986 |
identifier_str_mv |
Evaluation of machine learning algorithms -k nearest neighbors and support vector machines- for strawberries classification during food drying process; VIII Congreso de Matemática Aplicada, Computacional e Industrial; Santa Fé; Argentina; 2021; 407-410 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://asamaci.org.ar/revista-maci/ info:eu-repo/semantics/altIdentifier/url/https://asamaci.org.ar/maci2021/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Matemática Aplicada, Computacional e Industrial |
publisher.none.fl_str_mv |
Asociación Argentina de Matemática Aplicada, Computacional e Industrial |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614423755358208 |
score |
13.070432 |