Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model

Autores
Albano, Ezequiel Vicente
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Schelling model is widely used for the study of segregation behaviour in sociodynamics, econophysics, and related disciplines. Agents of two types placed in a lattice or network are allowed to exchange their locations on the basis of a transfer rule (T(S, A)), which depends on the satisfaction that the agent already has in her/his present position (S), and the attractiveness of the future position (A). The satisfaction and the attractiveness that the agent feels are measured in terms of the fraction between the number of agents of the same type that are present in the neighbourhood of the agent under consideration and the total number of neighbours. In this work we propose a generalization of the Schelling model such that the relative influence of satisfaction and attractiveness can be enhanced or depleted by means of an exponent q, i.e. T(S, A) = (1−S)qA. We report extensive Monte Carlo numerical simulations performed for the twodimensional square lattice with initial conditions of two different types: (i) fully disordered configurations of randomly located agents; and (ii) fully segregated configurations with a flat interface between two domains of unlike agents. We show that the proposed model exhibits a rich and interesting complex behaviour that emerges from the competitive interplay between interfacial roughening and the diffusion of isolated agents in the bulk of clusters of unlike agents. The first process dominates the early time regime, while the second one prevails for longer times after a suitable crossover time. Our numerical results are rationalized in terms of a dynamic finite-size scaling ansatz.
Fil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Materia
Intrefaces
Dynamic-behaviour
Segregation
Social-Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/271116

id CONICETDig_ac4fd4525e58057ddb555599e48120b8
oai_identifier_str oai:ri.conicet.gov.ar:11336/271116
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling modelAlbano, Ezequiel VicenteIntrefacesDynamic-behaviourSegregationSocial-Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Schelling model is widely used for the study of segregation behaviour in sociodynamics, econophysics, and related disciplines. Agents of two types placed in a lattice or network are allowed to exchange their locations on the basis of a transfer rule (T(S, A)), which depends on the satisfaction that the agent already has in her/his present position (S), and the attractiveness of the future position (A). The satisfaction and the attractiveness that the agent feels are measured in terms of the fraction between the number of agents of the same type that are present in the neighbourhood of the agent under consideration and the total number of neighbours. In this work we propose a generalization of the Schelling model such that the relative influence of satisfaction and attractiveness can be enhanced or depleted by means of an exponent q, i.e. T(S, A) = (1−S)qA. We report extensive Monte Carlo numerical simulations performed for the twodimensional square lattice with initial conditions of two different types: (i) fully disordered configurations of randomly located agents; and (ii) fully segregated configurations with a flat interface between two domains of unlike agents. We show that the proposed model exhibits a rich and interesting complex behaviour that emerges from the competitive interplay between interfacial roughening and the diffusion of isolated agents in the bulk of clusters of unlike agents. The first process dominates the early time regime, while the second one prevails for longer times after a suitable crossover time. Our numerical results are rationalized in terms of a dynamic finite-size scaling ansatz.Fil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaIOP Publishing2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271116Albano, Ezequiel Vicente; Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2012; 3-2012; 3013-30291742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/2012/03/P03013info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2012/03/P03013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:40Zoai:ri.conicet.gov.ar:11336/271116instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:40.384CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model
title Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model
spellingShingle Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model
Albano, Ezequiel Vicente
Intrefaces
Dynamic-behaviour
Segregation
Social-Dynamics
title_short Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model
title_full Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model
title_fullStr Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model
title_full_unstemmed Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model
title_sort Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model
dc.creator.none.fl_str_mv Albano, Ezequiel Vicente
author Albano, Ezequiel Vicente
author_facet Albano, Ezequiel Vicente
author_role author
dc.subject.none.fl_str_mv Intrefaces
Dynamic-behaviour
Segregation
Social-Dynamics
topic Intrefaces
Dynamic-behaviour
Segregation
Social-Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Schelling model is widely used for the study of segregation behaviour in sociodynamics, econophysics, and related disciplines. Agents of two types placed in a lattice or network are allowed to exchange their locations on the basis of a transfer rule (T(S, A)), which depends on the satisfaction that the agent already has in her/his present position (S), and the attractiveness of the future position (A). The satisfaction and the attractiveness that the agent feels are measured in terms of the fraction between the number of agents of the same type that are present in the neighbourhood of the agent under consideration and the total number of neighbours. In this work we propose a generalization of the Schelling model such that the relative influence of satisfaction and attractiveness can be enhanced or depleted by means of an exponent q, i.e. T(S, A) = (1−S)qA. We report extensive Monte Carlo numerical simulations performed for the twodimensional square lattice with initial conditions of two different types: (i) fully disordered configurations of randomly located agents; and (ii) fully segregated configurations with a flat interface between two domains of unlike agents. We show that the proposed model exhibits a rich and interesting complex behaviour that emerges from the competitive interplay between interfacial roughening and the diffusion of isolated agents in the bulk of clusters of unlike agents. The first process dominates the early time regime, while the second one prevails for longer times after a suitable crossover time. Our numerical results are rationalized in terms of a dynamic finite-size scaling ansatz.
Fil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
description The Schelling model is widely used for the study of segregation behaviour in sociodynamics, econophysics, and related disciplines. Agents of two types placed in a lattice or network are allowed to exchange their locations on the basis of a transfer rule (T(S, A)), which depends on the satisfaction that the agent already has in her/his present position (S), and the attractiveness of the future position (A). The satisfaction and the attractiveness that the agent feels are measured in terms of the fraction between the number of agents of the same type that are present in the neighbourhood of the agent under consideration and the total number of neighbours. In this work we propose a generalization of the Schelling model such that the relative influence of satisfaction and attractiveness can be enhanced or depleted by means of an exponent q, i.e. T(S, A) = (1−S)qA. We report extensive Monte Carlo numerical simulations performed for the twodimensional square lattice with initial conditions of two different types: (i) fully disordered configurations of randomly located agents; and (ii) fully segregated configurations with a flat interface between two domains of unlike agents. We show that the proposed model exhibits a rich and interesting complex behaviour that emerges from the competitive interplay between interfacial roughening and the diffusion of isolated agents in the bulk of clusters of unlike agents. The first process dominates the early time regime, while the second one prevails for longer times after a suitable crossover time. Our numerical results are rationalized in terms of a dynamic finite-size scaling ansatz.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/271116
Albano, Ezequiel Vicente; Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2012; 3-2012; 3013-3029
1742-5468
CONICET Digital
CONICET
url http://hdl.handle.net/11336/271116
identifier_str_mv Albano, Ezequiel Vicente; Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2012; 3-2012; 3013-3029
1742-5468
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/2012/03/P03013
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2012/03/P03013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613977317834752
score 13.070432