Characterizing segregation in the Schelling–Voter model
- Autores
- Caridi, Délida Inés; Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Schiaffino, Pablo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we analyze several aspects related with segregation patterns appearing in the Schelling–Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites.
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Schiaffino, Pablo. Universidad Torcuato Di Tella; Argentina - Materia
-
CROWDS
SCHELLING MODEL
SEGREGATION
VOTER MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55580
Ver los metadatos del registro completo
id |
CONICETDig_0f01a4f725c20b66a665a4aba24e9487 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55580 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Characterizing segregation in the Schelling–Voter modelCaridi, Délida InésPinasco, Juan PabloSaintier, Nicolas Bernard ClaudeSchiaffino, PabloCROWDSSCHELLING MODELSEGREGATIONVOTER MODELhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we analyze several aspects related with segregation patterns appearing in the Schelling–Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites.Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Schiaffino, Pablo. Universidad Torcuato Di Tella; ArgentinaElsevier Science2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55580Caridi, Délida Inés; Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Schiaffino, Pablo; Characterizing segregation in the Schelling–Voter model; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 487; 12-2017; 125-1420378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437117306118info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.05.092info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:16Zoai:ri.conicet.gov.ar:11336/55580instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:16.787CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Characterizing segregation in the Schelling–Voter model |
title |
Characterizing segregation in the Schelling–Voter model |
spellingShingle |
Characterizing segregation in the Schelling–Voter model Caridi, Délida Inés CROWDS SCHELLING MODEL SEGREGATION VOTER MODEL |
title_short |
Characterizing segregation in the Schelling–Voter model |
title_full |
Characterizing segregation in the Schelling–Voter model |
title_fullStr |
Characterizing segregation in the Schelling–Voter model |
title_full_unstemmed |
Characterizing segregation in the Schelling–Voter model |
title_sort |
Characterizing segregation in the Schelling–Voter model |
dc.creator.none.fl_str_mv |
Caridi, Délida Inés Pinasco, Juan Pablo Saintier, Nicolas Bernard Claude Schiaffino, Pablo |
author |
Caridi, Délida Inés |
author_facet |
Caridi, Délida Inés Pinasco, Juan Pablo Saintier, Nicolas Bernard Claude Schiaffino, Pablo |
author_role |
author |
author2 |
Pinasco, Juan Pablo Saintier, Nicolas Bernard Claude Schiaffino, Pablo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CROWDS SCHELLING MODEL SEGREGATION VOTER MODEL |
topic |
CROWDS SCHELLING MODEL SEGREGATION VOTER MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we analyze several aspects related with segregation patterns appearing in the Schelling–Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites. Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Schiaffino, Pablo. Universidad Torcuato Di Tella; Argentina |
description |
In this work we analyze several aspects related with segregation patterns appearing in the Schelling–Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55580 Caridi, Délida Inés; Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Schiaffino, Pablo; Characterizing segregation in the Schelling–Voter model; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 487; 12-2017; 125-142 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55580 |
identifier_str_mv |
Caridi, Délida Inés; Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Schiaffino, Pablo; Characterizing segregation in the Schelling–Voter model; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 487; 12-2017; 125-142 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437117306118 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.05.092 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613969319297024 |
score |
13.070432 |