Characterizing segregation in the Schelling–Voter model

Autores
Caridi, Délida Inés; Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Schiaffino, Pablo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we analyze several aspects related with segregation patterns appearing in the Schelling–Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites.
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Schiaffino, Pablo. Universidad Torcuato Di Tella; Argentina
Materia
CROWDS
SCHELLING MODEL
SEGREGATION
VOTER MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55580

id CONICETDig_0f01a4f725c20b66a665a4aba24e9487
oai_identifier_str oai:ri.conicet.gov.ar:11336/55580
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterizing segregation in the Schelling–Voter modelCaridi, Délida InésPinasco, Juan PabloSaintier, Nicolas Bernard ClaudeSchiaffino, PabloCROWDSSCHELLING MODELSEGREGATIONVOTER MODELhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we analyze several aspects related with segregation patterns appearing in the Schelling–Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites.Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Schiaffino, Pablo. Universidad Torcuato Di Tella; ArgentinaElsevier Science2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55580Caridi, Délida Inés; Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Schiaffino, Pablo; Characterizing segregation in the Schelling–Voter model; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 487; 12-2017; 125-1420378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437117306118info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.05.092info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:16Zoai:ri.conicet.gov.ar:11336/55580instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:16.787CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterizing segregation in the Schelling–Voter model
title Characterizing segregation in the Schelling–Voter model
spellingShingle Characterizing segregation in the Schelling–Voter model
Caridi, Délida Inés
CROWDS
SCHELLING MODEL
SEGREGATION
VOTER MODEL
title_short Characterizing segregation in the Schelling–Voter model
title_full Characterizing segregation in the Schelling–Voter model
title_fullStr Characterizing segregation in the Schelling–Voter model
title_full_unstemmed Characterizing segregation in the Schelling–Voter model
title_sort Characterizing segregation in the Schelling–Voter model
dc.creator.none.fl_str_mv Caridi, Délida Inés
Pinasco, Juan Pablo
Saintier, Nicolas Bernard Claude
Schiaffino, Pablo
author Caridi, Délida Inés
author_facet Caridi, Délida Inés
Pinasco, Juan Pablo
Saintier, Nicolas Bernard Claude
Schiaffino, Pablo
author_role author
author2 Pinasco, Juan Pablo
Saintier, Nicolas Bernard Claude
Schiaffino, Pablo
author2_role author
author
author
dc.subject.none.fl_str_mv CROWDS
SCHELLING MODEL
SEGREGATION
VOTER MODEL
topic CROWDS
SCHELLING MODEL
SEGREGATION
VOTER MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we analyze several aspects related with segregation patterns appearing in the Schelling–Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites.
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Schiaffino, Pablo. Universidad Torcuato Di Tella; Argentina
description In this work we analyze several aspects related with segregation patterns appearing in the Schelling–Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55580
Caridi, Délida Inés; Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Schiaffino, Pablo; Characterizing segregation in the Schelling–Voter model; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 487; 12-2017; 125-142
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55580
identifier_str_mv Caridi, Délida Inés; Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Schiaffino, Pablo; Characterizing segregation in the Schelling–Voter model; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 487; 12-2017; 125-142
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437117306118
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.05.092
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613969319297024
score 13.070432