Subfield management class delineation using cluster analysis from spatial principal components of soil variables
- Autores
- Córdoba, Mariano; Bruno, Cecilia Ines; Costa, Jose Luis; Balzarini, Monica Graciela
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding spatial variation within a field is essential for site-specific crop management, which requires the delineation of management areas. Several soil and terrain variables are used to classify the field points into classes. Fuzzy k-means cluster analysis is a widely used tool to delineate management classes in the multivariate context. However, this clustering method does not consider the presence of spatial correlations in the data. The MULTISPATI-PCA algorithm is an extension of principal component analysis that considers spatial autocorrelation in the original variables to produce synthetic variables. We propose and illustrate the implementation of a new method (KM-sPC) for subfield management class delineation based on the joint use of MULTISPATI-PCA and fuzzy k-means cluster. To assess the performance of KM-sPC, we performed clustering of the original soil variables and of both spatial and classical principal components on three field data sets. KM-sPC algorithm improved the non-spatial clustering in the formation of within-field management classes. Mapping of KM-sPC classification shows a more contiguous zoning. KM-sPC showed the highest yield differences between delineated classes and the smallest within-class yield variance.
Fil: Córdoba, Mariano. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Multispati-Pca
Fuzzy K-Means
Precision Agriculture - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23303
Ver los metadatos del registro completo
id |
CONICETDig_624c9d51edfc86ce862a7ded20167251 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23303 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Subfield management class delineation using cluster analysis from spatial principal components of soil variablesCórdoba, MarianoBruno, Cecilia InesCosta, Jose LuisBalzarini, Monica GracielaMultispati-PcaFuzzy K-MeansPrecision Agriculturehttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Understanding spatial variation within a field is essential for site-specific crop management, which requires the delineation of management areas. Several soil and terrain variables are used to classify the field points into classes. Fuzzy k-means cluster analysis is a widely used tool to delineate management classes in the multivariate context. However, this clustering method does not consider the presence of spatial correlations in the data. The MULTISPATI-PCA algorithm is an extension of principal component analysis that considers spatial autocorrelation in the original variables to produce synthetic variables. We propose and illustrate the implementation of a new method (KM-sPC) for subfield management class delineation based on the joint use of MULTISPATI-PCA and fuzzy k-means cluster. To assess the performance of KM-sPC, we performed clustering of the original soil variables and of both spatial and classical principal components on three field data sets. KM-sPC algorithm improved the non-spatial clustering in the formation of within-field management classes. Mapping of KM-sPC classification shows a more contiguous zoning. KM-sPC showed the highest yield differences between delineated classes and the smallest within-class yield variance.Fil: Córdoba, Mariano. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23303Córdoba, Mariano; Bruno, Cecilia Ines; Costa, Jose Luis; Balzarini, Monica Graciela; Subfield management class delineation using cluster analysis from spatial principal components of soil variables; Elsevier; Computers and Eletronics in Agriculture; 97; 7-2013; 6-140168-1699CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2013.05.009info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168169913001282info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:54Zoai:ri.conicet.gov.ar:11336/23303instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:54.69CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Subfield management class delineation using cluster analysis from spatial principal components of soil variables |
title |
Subfield management class delineation using cluster analysis from spatial principal components of soil variables |
spellingShingle |
Subfield management class delineation using cluster analysis from spatial principal components of soil variables Córdoba, Mariano Multispati-Pca Fuzzy K-Means Precision Agriculture |
title_short |
Subfield management class delineation using cluster analysis from spatial principal components of soil variables |
title_full |
Subfield management class delineation using cluster analysis from spatial principal components of soil variables |
title_fullStr |
Subfield management class delineation using cluster analysis from spatial principal components of soil variables |
title_full_unstemmed |
Subfield management class delineation using cluster analysis from spatial principal components of soil variables |
title_sort |
Subfield management class delineation using cluster analysis from spatial principal components of soil variables |
dc.creator.none.fl_str_mv |
Córdoba, Mariano Bruno, Cecilia Ines Costa, Jose Luis Balzarini, Monica Graciela |
author |
Córdoba, Mariano |
author_facet |
Córdoba, Mariano Bruno, Cecilia Ines Costa, Jose Luis Balzarini, Monica Graciela |
author_role |
author |
author2 |
Bruno, Cecilia Ines Costa, Jose Luis Balzarini, Monica Graciela |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Multispati-Pca Fuzzy K-Means Precision Agriculture |
topic |
Multispati-Pca Fuzzy K-Means Precision Agriculture |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Understanding spatial variation within a field is essential for site-specific crop management, which requires the delineation of management areas. Several soil and terrain variables are used to classify the field points into classes. Fuzzy k-means cluster analysis is a widely used tool to delineate management classes in the multivariate context. However, this clustering method does not consider the presence of spatial correlations in the data. The MULTISPATI-PCA algorithm is an extension of principal component analysis that considers spatial autocorrelation in the original variables to produce synthetic variables. We propose and illustrate the implementation of a new method (KM-sPC) for subfield management class delineation based on the joint use of MULTISPATI-PCA and fuzzy k-means cluster. To assess the performance of KM-sPC, we performed clustering of the original soil variables and of both spatial and classical principal components on three field data sets. KM-sPC algorithm improved the non-spatial clustering in the formation of within-field management classes. Mapping of KM-sPC classification shows a more contiguous zoning. KM-sPC showed the highest yield differences between delineated classes and the smallest within-class yield variance. Fil: Córdoba, Mariano. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Understanding spatial variation within a field is essential for site-specific crop management, which requires the delineation of management areas. Several soil and terrain variables are used to classify the field points into classes. Fuzzy k-means cluster analysis is a widely used tool to delineate management classes in the multivariate context. However, this clustering method does not consider the presence of spatial correlations in the data. The MULTISPATI-PCA algorithm is an extension of principal component analysis that considers spatial autocorrelation in the original variables to produce synthetic variables. We propose and illustrate the implementation of a new method (KM-sPC) for subfield management class delineation based on the joint use of MULTISPATI-PCA and fuzzy k-means cluster. To assess the performance of KM-sPC, we performed clustering of the original soil variables and of both spatial and classical principal components on three field data sets. KM-sPC algorithm improved the non-spatial clustering in the formation of within-field management classes. Mapping of KM-sPC classification shows a more contiguous zoning. KM-sPC showed the highest yield differences between delineated classes and the smallest within-class yield variance. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23303 Córdoba, Mariano; Bruno, Cecilia Ines; Costa, Jose Luis; Balzarini, Monica Graciela; Subfield management class delineation using cluster analysis from spatial principal components of soil variables; Elsevier; Computers and Eletronics in Agriculture; 97; 7-2013; 6-14 0168-1699 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23303 |
identifier_str_mv |
Córdoba, Mariano; Bruno, Cecilia Ines; Costa, Jose Luis; Balzarini, Monica Graciela; Subfield management class delineation using cluster analysis from spatial principal components of soil variables; Elsevier; Computers and Eletronics in Agriculture; 97; 7-2013; 6-14 0168-1699 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2013.05.009 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168169913001282 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980363862802432 |
score |
13.004268 |