Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation

Autores
Dugaro, Agustin; Elías, Gabriela del Valle; Darriba, Luciano Ariel
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The goal of this research is to study how the fragmentation of planetary embryos can affect the physical and dynamical properties of terrestrial planets around solar-type stars. Our work focuses on the formation and evolution of planets and water delivery in the Habitable Zone. We distinguish class A and class B HZ planets, which have an accretion seed initially located inside and beyond the snowline, respectively. We develop an Nbody integrator that incorporates fragmentation and hit-and-run collisions, which is called D3 N-body code. From this, we perform 46 numerical simulations of planetary accretion in systems that host two gaseous giants like Jupiter and Saturn. We compare two sets of 23 N-body simulations, one of which includes a realistic collisional treatment and the other one models all impacts as perfect mergers. The final masses of the HZ planets formed in runs with fragmentation are about 15%-20% smaller than those obtained without fragmentation. As for the class A HZ planets, those formed in simulations without fragmentation experience very significant increases in mass respect to their initial values, while the growth of those produced in runs with fragmentation is less relevant. We remark that the fragments play a secondary role in the masses of the class A HZ planets, providing less than 30% of their final values. In runs without fragmentation, the final fraction of water of the class A HZ planets keeps the initial value since they do not accrete water-rich embryos. In runs with fragmentation, the final fraction of water of such planets strongly depends on the model used to distribute the water after each collision. The class B HZ planets do not show significant differences concerning their final water contents in runs with and without fragmentation. From this, we find that the collisional fragmentation is not a barrier to the survival of water worlds in the HZ.
Fil: Dugaro, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Elías, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Materia
TERRESTRIAL PLANETS
METHODS: NUMERICAL
PROTOPLANETARY DISKS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/148478

id CONICETDig_ab9463019b95e208d67732be037ccffd
oai_identifier_str oai:ri.conicet.gov.ar:11336/148478
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentationDugaro, AgustinElías, Gabriela del ValleDarriba, Luciano ArielTERRESTRIAL PLANETSMETHODS: NUMERICALPROTOPLANETARY DISKShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The goal of this research is to study how the fragmentation of planetary embryos can affect the physical and dynamical properties of terrestrial planets around solar-type stars. Our work focuses on the formation and evolution of planets and water delivery in the Habitable Zone. We distinguish class A and class B HZ planets, which have an accretion seed initially located inside and beyond the snowline, respectively. We develop an Nbody integrator that incorporates fragmentation and hit-and-run collisions, which is called D3 N-body code. From this, we perform 46 numerical simulations of planetary accretion in systems that host two gaseous giants like Jupiter and Saturn. We compare two sets of 23 N-body simulations, one of which includes a realistic collisional treatment and the other one models all impacts as perfect mergers. The final masses of the HZ planets formed in runs with fragmentation are about 15%-20% smaller than those obtained without fragmentation. As for the class A HZ planets, those formed in simulations without fragmentation experience very significant increases in mass respect to their initial values, while the growth of those produced in runs with fragmentation is less relevant. We remark that the fragments play a secondary role in the masses of the class A HZ planets, providing less than 30% of their final values. In runs without fragmentation, the final fraction of water of the class A HZ planets keeps the initial value since they do not accrete water-rich embryos. In runs with fragmentation, the final fraction of water of such planets strongly depends on the model used to distribute the water after each collision. The class B HZ planets do not show significant differences concerning their final water contents in runs with and without fragmentation. From this, we find that the collisional fragmentation is not a barrier to the survival of water worlds in the HZ.Fil: Dugaro, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Elías, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaEDP Sciences2019-11-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/148478Dugaro, Agustin; Elías, Gabriela del Valle; Darriba, Luciano Ariel; Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation; EDP Sciences; Astronomy and Astrophysics; 632; A14; 13-11-2019; 1-170004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.02982info:eu-repo/semantics/altIdentifier/doi/ 10.1051/0004-6361/201936061info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:46Zoai:ri.conicet.gov.ar:11336/148478instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:46.308CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation
title Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation
spellingShingle Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation
Dugaro, Agustin
TERRESTRIAL PLANETS
METHODS: NUMERICAL
PROTOPLANETARY DISKS
title_short Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation
title_full Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation
title_fullStr Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation
title_full_unstemmed Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation
title_sort Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation
dc.creator.none.fl_str_mv Dugaro, Agustin
Elías, Gabriela del Valle
Darriba, Luciano Ariel
author Dugaro, Agustin
author_facet Dugaro, Agustin
Elías, Gabriela del Valle
Darriba, Luciano Ariel
author_role author
author2 Elías, Gabriela del Valle
Darriba, Luciano Ariel
author2_role author
author
dc.subject.none.fl_str_mv TERRESTRIAL PLANETS
METHODS: NUMERICAL
PROTOPLANETARY DISKS
topic TERRESTRIAL PLANETS
METHODS: NUMERICAL
PROTOPLANETARY DISKS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The goal of this research is to study how the fragmentation of planetary embryos can affect the physical and dynamical properties of terrestrial planets around solar-type stars. Our work focuses on the formation and evolution of planets and water delivery in the Habitable Zone. We distinguish class A and class B HZ planets, which have an accretion seed initially located inside and beyond the snowline, respectively. We develop an Nbody integrator that incorporates fragmentation and hit-and-run collisions, which is called D3 N-body code. From this, we perform 46 numerical simulations of planetary accretion in systems that host two gaseous giants like Jupiter and Saturn. We compare two sets of 23 N-body simulations, one of which includes a realistic collisional treatment and the other one models all impacts as perfect mergers. The final masses of the HZ planets formed in runs with fragmentation are about 15%-20% smaller than those obtained without fragmentation. As for the class A HZ planets, those formed in simulations without fragmentation experience very significant increases in mass respect to their initial values, while the growth of those produced in runs with fragmentation is less relevant. We remark that the fragments play a secondary role in the masses of the class A HZ planets, providing less than 30% of their final values. In runs without fragmentation, the final fraction of water of the class A HZ planets keeps the initial value since they do not accrete water-rich embryos. In runs with fragmentation, the final fraction of water of such planets strongly depends on the model used to distribute the water after each collision. The class B HZ planets do not show significant differences concerning their final water contents in runs with and without fragmentation. From this, we find that the collisional fragmentation is not a barrier to the survival of water worlds in the HZ.
Fil: Dugaro, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Elías, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
description The goal of this research is to study how the fragmentation of planetary embryos can affect the physical and dynamical properties of terrestrial planets around solar-type stars. Our work focuses on the formation and evolution of planets and water delivery in the Habitable Zone. We distinguish class A and class B HZ planets, which have an accretion seed initially located inside and beyond the snowline, respectively. We develop an Nbody integrator that incorporates fragmentation and hit-and-run collisions, which is called D3 N-body code. From this, we perform 46 numerical simulations of planetary accretion in systems that host two gaseous giants like Jupiter and Saturn. We compare two sets of 23 N-body simulations, one of which includes a realistic collisional treatment and the other one models all impacts as perfect mergers. The final masses of the HZ planets formed in runs with fragmentation are about 15%-20% smaller than those obtained without fragmentation. As for the class A HZ planets, those formed in simulations without fragmentation experience very significant increases in mass respect to their initial values, while the growth of those produced in runs with fragmentation is less relevant. We remark that the fragments play a secondary role in the masses of the class A HZ planets, providing less than 30% of their final values. In runs without fragmentation, the final fraction of water of the class A HZ planets keeps the initial value since they do not accrete water-rich embryos. In runs with fragmentation, the final fraction of water of such planets strongly depends on the model used to distribute the water after each collision. The class B HZ planets do not show significant differences concerning their final water contents in runs with and without fragmentation. From this, we find that the collisional fragmentation is not a barrier to the survival of water worlds in the HZ.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-13
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/148478
Dugaro, Agustin; Elías, Gabriela del Valle; Darriba, Luciano Ariel; Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation; EDP Sciences; Astronomy and Astrophysics; 632; A14; 13-11-2019; 1-17
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/148478
identifier_str_mv Dugaro, Agustin; Elías, Gabriela del Valle; Darriba, Luciano Ariel; Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation; EDP Sciences; Astronomy and Astrophysics; 632; A14; 13-11-2019; 1-17
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.02982
info:eu-repo/semantics/altIdentifier/doi/ 10.1051/0004-6361/201936061
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613226241720320
score 13.070432