Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation
- Autores
- Dugaro, Agustin; Elías, Gabriela del Valle; Darriba, Luciano Ariel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The goal of this research is to study how the fragmentation of planetary embryos can affect the physical and dynamical properties of terrestrial planets around solar-type stars. Our work focuses on the formation and evolution of planets and water delivery in the Habitable Zone. We distinguish class A and class B HZ planets, which have an accretion seed initially located inside and beyond the snowline, respectively. We develop an Nbody integrator that incorporates fragmentation and hit-and-run collisions, which is called D3 N-body code. From this, we perform 46 numerical simulations of planetary accretion in systems that host two gaseous giants like Jupiter and Saturn. We compare two sets of 23 N-body simulations, one of which includes a realistic collisional treatment and the other one models all impacts as perfect mergers. The final masses of the HZ planets formed in runs with fragmentation are about 15%-20% smaller than those obtained without fragmentation. As for the class A HZ planets, those formed in simulations without fragmentation experience very significant increases in mass respect to their initial values, while the growth of those produced in runs with fragmentation is less relevant. We remark that the fragments play a secondary role in the masses of the class A HZ planets, providing less than 30% of their final values. In runs without fragmentation, the final fraction of water of the class A HZ planets keeps the initial value since they do not accrete water-rich embryos. In runs with fragmentation, the final fraction of water of such planets strongly depends on the model used to distribute the water after each collision. The class B HZ planets do not show significant differences concerning their final water contents in runs with and without fragmentation. From this, we find that the collisional fragmentation is not a barrier to the survival of water worlds in the HZ.
Fil: Dugaro, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Elías, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina - Materia
-
TERRESTRIAL PLANETS
METHODS: NUMERICAL
PROTOPLANETARY DISKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/148478
Ver los metadatos del registro completo
id |
CONICETDig_ab9463019b95e208d67732be037ccffd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/148478 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentationDugaro, AgustinElías, Gabriela del ValleDarriba, Luciano ArielTERRESTRIAL PLANETSMETHODS: NUMERICALPROTOPLANETARY DISKShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The goal of this research is to study how the fragmentation of planetary embryos can affect the physical and dynamical properties of terrestrial planets around solar-type stars. Our work focuses on the formation and evolution of planets and water delivery in the Habitable Zone. We distinguish class A and class B HZ planets, which have an accretion seed initially located inside and beyond the snowline, respectively. We develop an Nbody integrator that incorporates fragmentation and hit-and-run collisions, which is called D3 N-body code. From this, we perform 46 numerical simulations of planetary accretion in systems that host two gaseous giants like Jupiter and Saturn. We compare two sets of 23 N-body simulations, one of which includes a realistic collisional treatment and the other one models all impacts as perfect mergers. The final masses of the HZ planets formed in runs with fragmentation are about 15%-20% smaller than those obtained without fragmentation. As for the class A HZ planets, those formed in simulations without fragmentation experience very significant increases in mass respect to their initial values, while the growth of those produced in runs with fragmentation is less relevant. We remark that the fragments play a secondary role in the masses of the class A HZ planets, providing less than 30% of their final values. In runs without fragmentation, the final fraction of water of the class A HZ planets keeps the initial value since they do not accrete water-rich embryos. In runs with fragmentation, the final fraction of water of such planets strongly depends on the model used to distribute the water after each collision. The class B HZ planets do not show significant differences concerning their final water contents in runs with and without fragmentation. From this, we find that the collisional fragmentation is not a barrier to the survival of water worlds in the HZ.Fil: Dugaro, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Elías, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaEDP Sciences2019-11-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/148478Dugaro, Agustin; Elías, Gabriela del Valle; Darriba, Luciano Ariel; Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation; EDP Sciences; Astronomy and Astrophysics; 632; A14; 13-11-2019; 1-170004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.02982info:eu-repo/semantics/altIdentifier/doi/ 10.1051/0004-6361/201936061info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:46Zoai:ri.conicet.gov.ar:11336/148478instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:46.308CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation |
title |
Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation |
spellingShingle |
Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation Dugaro, Agustin TERRESTRIAL PLANETS METHODS: NUMERICAL PROTOPLANETARY DISKS |
title_short |
Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation |
title_full |
Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation |
title_fullStr |
Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation |
title_full_unstemmed |
Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation |
title_sort |
Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation |
dc.creator.none.fl_str_mv |
Dugaro, Agustin Elías, Gabriela del Valle Darriba, Luciano Ariel |
author |
Dugaro, Agustin |
author_facet |
Dugaro, Agustin Elías, Gabriela del Valle Darriba, Luciano Ariel |
author_role |
author |
author2 |
Elías, Gabriela del Valle Darriba, Luciano Ariel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
TERRESTRIAL PLANETS METHODS: NUMERICAL PROTOPLANETARY DISKS |
topic |
TERRESTRIAL PLANETS METHODS: NUMERICAL PROTOPLANETARY DISKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The goal of this research is to study how the fragmentation of planetary embryos can affect the physical and dynamical properties of terrestrial planets around solar-type stars. Our work focuses on the formation and evolution of planets and water delivery in the Habitable Zone. We distinguish class A and class B HZ planets, which have an accretion seed initially located inside and beyond the snowline, respectively. We develop an Nbody integrator that incorporates fragmentation and hit-and-run collisions, which is called D3 N-body code. From this, we perform 46 numerical simulations of planetary accretion in systems that host two gaseous giants like Jupiter and Saturn. We compare two sets of 23 N-body simulations, one of which includes a realistic collisional treatment and the other one models all impacts as perfect mergers. The final masses of the HZ planets formed in runs with fragmentation are about 15%-20% smaller than those obtained without fragmentation. As for the class A HZ planets, those formed in simulations without fragmentation experience very significant increases in mass respect to their initial values, while the growth of those produced in runs with fragmentation is less relevant. We remark that the fragments play a secondary role in the masses of the class A HZ planets, providing less than 30% of their final values. In runs without fragmentation, the final fraction of water of the class A HZ planets keeps the initial value since they do not accrete water-rich embryos. In runs with fragmentation, the final fraction of water of such planets strongly depends on the model used to distribute the water after each collision. The class B HZ planets do not show significant differences concerning their final water contents in runs with and without fragmentation. From this, we find that the collisional fragmentation is not a barrier to the survival of water worlds in the HZ. Fil: Dugaro, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Elías, Gabriela del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina |
description |
The goal of this research is to study how the fragmentation of planetary embryos can affect the physical and dynamical properties of terrestrial planets around solar-type stars. Our work focuses on the formation and evolution of planets and water delivery in the Habitable Zone. We distinguish class A and class B HZ planets, which have an accretion seed initially located inside and beyond the snowline, respectively. We develop an Nbody integrator that incorporates fragmentation and hit-and-run collisions, which is called D3 N-body code. From this, we perform 46 numerical simulations of planetary accretion in systems that host two gaseous giants like Jupiter and Saturn. We compare two sets of 23 N-body simulations, one of which includes a realistic collisional treatment and the other one models all impacts as perfect mergers. The final masses of the HZ planets formed in runs with fragmentation are about 15%-20% smaller than those obtained without fragmentation. As for the class A HZ planets, those formed in simulations without fragmentation experience very significant increases in mass respect to their initial values, while the growth of those produced in runs with fragmentation is less relevant. We remark that the fragments play a secondary role in the masses of the class A HZ planets, providing less than 30% of their final values. In runs without fragmentation, the final fraction of water of the class A HZ planets keeps the initial value since they do not accrete water-rich embryos. In runs with fragmentation, the final fraction of water of such planets strongly depends on the model used to distribute the water after each collision. The class B HZ planets do not show significant differences concerning their final water contents in runs with and without fragmentation. From this, we find that the collisional fragmentation is not a barrier to the survival of water worlds in the HZ. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/148478 Dugaro, Agustin; Elías, Gabriela del Valle; Darriba, Luciano Ariel; Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation; EDP Sciences; Astronomy and Astrophysics; 632; A14; 13-11-2019; 1-17 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/148478 |
identifier_str_mv |
Dugaro, Agustin; Elías, Gabriela del Valle; Darriba, Luciano Ariel; Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation; EDP Sciences; Astronomy and Astrophysics; 632; A14; 13-11-2019; 1-17 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.02982 info:eu-repo/semantics/altIdentifier/doi/ 10.1051/0004-6361/201936061 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613226241720320 |
score |
13.070432 |