Terrestrial planets in high-mass disks without gas giants
- Autores
- de Elia, Gonzalo Carlos; Guilera, Octavio Miguel; Brunini, Adrian
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. Observational and theoretical studies suggest that planetary systems consisting only of rocky planets are probably the most common in the Universe. Aims. We study the potential habitability of planets formed in high-mass disks without gas giants around solar-type stars. These systems are interesting because they are likely to harbor super-Earths or Neptune-mass planets on wide orbits, which one should be able to detect with the microlensing technique. Methods. First, a semi-analytical model was used to define the mass of the protoplanetary disks that produce Earth-like planets, superEarths, or mini-Neptunes, but not gas giants. Using mean values for the parameters that describe a disk and its evolution, we infer that disks with masses lower than 0.15 M are unable to form gas giants. Then, that semi-analytical model was used to describe the evolution of embryos and planetesimals during the gaseous phase for a given disk. Thus, initial conditions were obtained to perform N-body simulations of planetary accretion. We studied disks of 0.1, 0.125, and 0.15 M. Results. All our simulations form massive planets on wide orbits. For a 0.1 M disk, 2–3 super-Earths of 2.8 to 5.9 M⊕ are formed between 2 and 5 AU. For disks of 0.125 and 0.15 M, our simulations produce a 10–17.1 M⊕ planet between 1.6 and 2.7 AU, and other super-Earths are formed in outer regions. Moreover, six planets survive in the habitable zone (HZ). These planets have masses from 1.9 to 4.7 M⊕ and significant water contents ranging from 560 to 7482 Earth oceans, where one Earth ocean represents the amount of water on Earth’s surface, which equals 2.8 × 10−4 M⊕. Of the six planets formed in the HZ, three are water worlds with 39%–44% water by mass. These planets start the simulations beyond the snow line, which explains their high water abundances. In general terms, the smaller the mass of the planets observed on wide orbits, the higher the possibility to find water worlds in the HZ. In fact, massive planets can act as a dynamical barrier that prevents the inward diffusion of water-rich embryos located beyond the snow line. Conclusions. Systems without gas giants that harbor super-Earths or Neptune-mass planets on wide orbits around solar-type stars are of astrobiological interest. These systems are likely to harbor super-Earths in the HZ with significant water contents, which missions such as Kepler and Darwin should be able to find.
Fil: de Elia, Gonzalo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina
Fil: Brunini, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina - Materia
-
Protoplanetary disks
Astrobiology
Numerical methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22312
Ver los metadatos del registro completo
id |
CONICETDig_efe4d35664ec3ec90c3645798af705ee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22312 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Terrestrial planets in high-mass disks without gas giantsde Elia, Gonzalo CarlosGuilera, Octavio MiguelBrunini, AdrianProtoplanetary disksAstrobiologyNumerical methodshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Observational and theoretical studies suggest that planetary systems consisting only of rocky planets are probably the most common in the Universe. Aims. We study the potential habitability of planets formed in high-mass disks without gas giants around solar-type stars. These systems are interesting because they are likely to harbor super-Earths or Neptune-mass planets on wide orbits, which one should be able to detect with the microlensing technique. Methods. First, a semi-analytical model was used to define the mass of the protoplanetary disks that produce Earth-like planets, superEarths, or mini-Neptunes, but not gas giants. Using mean values for the parameters that describe a disk and its evolution, we infer that disks with masses lower than 0.15 M are unable to form gas giants. Then, that semi-analytical model was used to describe the evolution of embryos and planetesimals during the gaseous phase for a given disk. Thus, initial conditions were obtained to perform N-body simulations of planetary accretion. We studied disks of 0.1, 0.125, and 0.15 M. Results. All our simulations form massive planets on wide orbits. For a 0.1 M disk, 2–3 super-Earths of 2.8 to 5.9 M⊕ are formed between 2 and 5 AU. For disks of 0.125 and 0.15 M, our simulations produce a 10–17.1 M⊕ planet between 1.6 and 2.7 AU, and other super-Earths are formed in outer regions. Moreover, six planets survive in the habitable zone (HZ). These planets have masses from 1.9 to 4.7 M⊕ and significant water contents ranging from 560 to 7482 Earth oceans, where one Earth ocean represents the amount of water on Earth’s surface, which equals 2.8 × 10−4 M⊕. Of the six planets formed in the HZ, three are water worlds with 39%–44% water by mass. These planets start the simulations beyond the snow line, which explains their high water abundances. In general terms, the smaller the mass of the planets observed on wide orbits, the higher the possibility to find water worlds in the HZ. In fact, massive planets can act as a dynamical barrier that prevents the inward diffusion of water-rich embryos located beyond the snow line. Conclusions. Systems without gas giants that harbor super-Earths or Neptune-mass planets on wide orbits around solar-type stars are of astrobiological interest. These systems are likely to harbor super-Earths in the HZ with significant water contents, which missions such as Kepler and Darwin should be able to find.Fil: de Elia, Gonzalo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Brunini, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaEdp Sciences S A2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22312de Elia, Gonzalo Carlos; Guilera, Octavio Miguel; Brunini, Adrian; Terrestrial planets in high-mass disks without gas giants; Edp Sciences S A; Astronomy And Astrophysics; 557; A42; 9-2013; 1-160004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201321304info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2013/09/aa21304-13/aa21304-13.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:02Zoai:ri.conicet.gov.ar:11336/22312instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:02.568CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Terrestrial planets in high-mass disks without gas giants |
title |
Terrestrial planets in high-mass disks without gas giants |
spellingShingle |
Terrestrial planets in high-mass disks without gas giants de Elia, Gonzalo Carlos Protoplanetary disks Astrobiology Numerical methods |
title_short |
Terrestrial planets in high-mass disks without gas giants |
title_full |
Terrestrial planets in high-mass disks without gas giants |
title_fullStr |
Terrestrial planets in high-mass disks without gas giants |
title_full_unstemmed |
Terrestrial planets in high-mass disks without gas giants |
title_sort |
Terrestrial planets in high-mass disks without gas giants |
dc.creator.none.fl_str_mv |
de Elia, Gonzalo Carlos Guilera, Octavio Miguel Brunini, Adrian |
author |
de Elia, Gonzalo Carlos |
author_facet |
de Elia, Gonzalo Carlos Guilera, Octavio Miguel Brunini, Adrian |
author_role |
author |
author2 |
Guilera, Octavio Miguel Brunini, Adrian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Protoplanetary disks Astrobiology Numerical methods |
topic |
Protoplanetary disks Astrobiology Numerical methods |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Context. Observational and theoretical studies suggest that planetary systems consisting only of rocky planets are probably the most common in the Universe. Aims. We study the potential habitability of planets formed in high-mass disks without gas giants around solar-type stars. These systems are interesting because they are likely to harbor super-Earths or Neptune-mass planets on wide orbits, which one should be able to detect with the microlensing technique. Methods. First, a semi-analytical model was used to define the mass of the protoplanetary disks that produce Earth-like planets, superEarths, or mini-Neptunes, but not gas giants. Using mean values for the parameters that describe a disk and its evolution, we infer that disks with masses lower than 0.15 M are unable to form gas giants. Then, that semi-analytical model was used to describe the evolution of embryos and planetesimals during the gaseous phase for a given disk. Thus, initial conditions were obtained to perform N-body simulations of planetary accretion. We studied disks of 0.1, 0.125, and 0.15 M. Results. All our simulations form massive planets on wide orbits. For a 0.1 M disk, 2–3 super-Earths of 2.8 to 5.9 M⊕ are formed between 2 and 5 AU. For disks of 0.125 and 0.15 M, our simulations produce a 10–17.1 M⊕ planet between 1.6 and 2.7 AU, and other super-Earths are formed in outer regions. Moreover, six planets survive in the habitable zone (HZ). These planets have masses from 1.9 to 4.7 M⊕ and significant water contents ranging from 560 to 7482 Earth oceans, where one Earth ocean represents the amount of water on Earth’s surface, which equals 2.8 × 10−4 M⊕. Of the six planets formed in the HZ, three are water worlds with 39%–44% water by mass. These planets start the simulations beyond the snow line, which explains their high water abundances. In general terms, the smaller the mass of the planets observed on wide orbits, the higher the possibility to find water worlds in the HZ. In fact, massive planets can act as a dynamical barrier that prevents the inward diffusion of water-rich embryos located beyond the snow line. Conclusions. Systems without gas giants that harbor super-Earths or Neptune-mass planets on wide orbits around solar-type stars are of astrobiological interest. These systems are likely to harbor super-Earths in the HZ with significant water contents, which missions such as Kepler and Darwin should be able to find. Fil: de Elia, Gonzalo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina Fil: Brunini, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; Argentina |
description |
Context. Observational and theoretical studies suggest that planetary systems consisting only of rocky planets are probably the most common in the Universe. Aims. We study the potential habitability of planets formed in high-mass disks without gas giants around solar-type stars. These systems are interesting because they are likely to harbor super-Earths or Neptune-mass planets on wide orbits, which one should be able to detect with the microlensing technique. Methods. First, a semi-analytical model was used to define the mass of the protoplanetary disks that produce Earth-like planets, superEarths, or mini-Neptunes, but not gas giants. Using mean values for the parameters that describe a disk and its evolution, we infer that disks with masses lower than 0.15 M are unable to form gas giants. Then, that semi-analytical model was used to describe the evolution of embryos and planetesimals during the gaseous phase for a given disk. Thus, initial conditions were obtained to perform N-body simulations of planetary accretion. We studied disks of 0.1, 0.125, and 0.15 M. Results. All our simulations form massive planets on wide orbits. For a 0.1 M disk, 2–3 super-Earths of 2.8 to 5.9 M⊕ are formed between 2 and 5 AU. For disks of 0.125 and 0.15 M, our simulations produce a 10–17.1 M⊕ planet between 1.6 and 2.7 AU, and other super-Earths are formed in outer regions. Moreover, six planets survive in the habitable zone (HZ). These planets have masses from 1.9 to 4.7 M⊕ and significant water contents ranging from 560 to 7482 Earth oceans, where one Earth ocean represents the amount of water on Earth’s surface, which equals 2.8 × 10−4 M⊕. Of the six planets formed in the HZ, three are water worlds with 39%–44% water by mass. These planets start the simulations beyond the snow line, which explains their high water abundances. In general terms, the smaller the mass of the planets observed on wide orbits, the higher the possibility to find water worlds in the HZ. In fact, massive planets can act as a dynamical barrier that prevents the inward diffusion of water-rich embryos located beyond the snow line. Conclusions. Systems without gas giants that harbor super-Earths or Neptune-mass planets on wide orbits around solar-type stars are of astrobiological interest. These systems are likely to harbor super-Earths in the HZ with significant water contents, which missions such as Kepler and Darwin should be able to find. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22312 de Elia, Gonzalo Carlos; Guilera, Octavio Miguel; Brunini, Adrian; Terrestrial planets in high-mass disks without gas giants; Edp Sciences S A; Astronomy And Astrophysics; 557; A42; 9-2013; 1-16 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22312 |
identifier_str_mv |
de Elia, Gonzalo Carlos; Guilera, Octavio Miguel; Brunini, Adrian; Terrestrial planets in high-mass disks without gas giants; Edp Sciences S A; Astronomy And Astrophysics; 557; A42; 9-2013; 1-16 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201321304 info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2013/09/aa21304-13/aa21304-13.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Edp Sciences S A |
publisher.none.fl_str_mv |
Edp Sciences S A |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613466472579072 |
score |
13.070432 |