Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism

Autores
Bavassi, Mariana Luz; Tagliazucchi, Enzo Rodolfo; Laje, Rodrigo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Time estimation is critical for survival and control of a variety of behaviors, both in humans and other animals. Time processing in the few hundred milliseconds range, known as millisecond timing, is involved in motor control, speech generation and recognition, and sensorimotor synchronization like playing music or finger tapping to an external beat. In finger tapping, a mechanistic explanation in terms of neuronal activations of how the brain achieves average synchronization against inherent noise and perturbations in the stimulus sequence is still missing despite considerable research. In this work we show that nonlinear effects are important for the recovery of synchronization following a perturbation (a step change in stimulus period), even for perturbation magnitudes smaller than 10% of the period, which is well below the amount of perturbation needed to display other nonlinear effects like saturation. We build a mathematical model for the error correction mechanism and test its predictions, and further propose a framework that allows us to unify the description of the three common types of perturbations and all perturbation magnitudes with a single set of parameter values. While previous works have proposed that multiple mechanisms/strategies are used for correcting different perturbation conditions (based on fitting the model?s parameters separately to different perturbation types and sizes), our results suggest that the synchronization behavior can be interpreted as the outcome of a single mechanism/strategy, and call for a revision of the idea of multiple strategies.
Fil: Bavassi, Mariana Luz. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnologia; Argentina
Fil: Tagliazucchi, Enzo Rodolfo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnologia; Argentina
Fil: Laje, Rodrigo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnologia; Argentina. University Of California; Estados Unidos de América;
Materia
Synchronization
Tapping
Modeling
Error Correction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/774

id CONICETDig_ab618a3539c286eed6045c7fca45fd9b
oai_identifier_str oai:ri.conicet.gov.ar:11336/774
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanismBavassi, Mariana LuzTagliazucchi, Enzo RodolfoLaje, RodrigoSynchronizationTappingModelingError Correctionhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Time estimation is critical for survival and control of a variety of behaviors, both in humans and other animals. Time processing in the few hundred milliseconds range, known as millisecond timing, is involved in motor control, speech generation and recognition, and sensorimotor synchronization like playing music or finger tapping to an external beat. In finger tapping, a mechanistic explanation in terms of neuronal activations of how the brain achieves average synchronization against inherent noise and perturbations in the stimulus sequence is still missing despite considerable research. In this work we show that nonlinear effects are important for the recovery of synchronization following a perturbation (a step change in stimulus period), even for perturbation magnitudes smaller than 10% of the period, which is well below the amount of perturbation needed to display other nonlinear effects like saturation. We build a mathematical model for the error correction mechanism and test its predictions, and further propose a framework that allows us to unify the description of the three common types of perturbations and all perturbation magnitudes with a single set of parameter values. While previous works have proposed that multiple mechanisms/strategies are used for correcting different perturbation conditions (based on fitting the model?s parameters separately to different perturbation types and sizes), our results suggest that the synchronization behavior can be interpreted as the outcome of a single mechanism/strategy, and call for a revision of the idea of multiple strategies.Fil: Bavassi, Mariana Luz. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnologia; ArgentinaFil: Tagliazucchi, Enzo Rodolfo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnologia; ArgentinaFil: Laje, Rodrigo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnologia; Argentina. University Of California; Estados Unidos de América;Elsevier Science Bv2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/774Bavassi, Mariana Luz; Tagliazucchi, Enzo Rodolfo; Laje, Rodrigo; Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism; Elsevier Science Bv; Human Movement Science; 32; 1; 2-2013; 21-470167-9457enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.humov.2012.06.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:13:49Zoai:ri.conicet.gov.ar:11336/774instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:13:49.302CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism
title Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism
spellingShingle Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism
Bavassi, Mariana Luz
Synchronization
Tapping
Modeling
Error Correction
title_short Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism
title_full Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism
title_fullStr Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism
title_full_unstemmed Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism
title_sort Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism
dc.creator.none.fl_str_mv Bavassi, Mariana Luz
Tagliazucchi, Enzo Rodolfo
Laje, Rodrigo
author Bavassi, Mariana Luz
author_facet Bavassi, Mariana Luz
Tagliazucchi, Enzo Rodolfo
Laje, Rodrigo
author_role author
author2 Tagliazucchi, Enzo Rodolfo
Laje, Rodrigo
author2_role author
author
dc.subject.none.fl_str_mv Synchronization
Tapping
Modeling
Error Correction
topic Synchronization
Tapping
Modeling
Error Correction
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Time estimation is critical for survival and control of a variety of behaviors, both in humans and other animals. Time processing in the few hundred milliseconds range, known as millisecond timing, is involved in motor control, speech generation and recognition, and sensorimotor synchronization like playing music or finger tapping to an external beat. In finger tapping, a mechanistic explanation in terms of neuronal activations of how the brain achieves average synchronization against inherent noise and perturbations in the stimulus sequence is still missing despite considerable research. In this work we show that nonlinear effects are important for the recovery of synchronization following a perturbation (a step change in stimulus period), even for perturbation magnitudes smaller than 10% of the period, which is well below the amount of perturbation needed to display other nonlinear effects like saturation. We build a mathematical model for the error correction mechanism and test its predictions, and further propose a framework that allows us to unify the description of the three common types of perturbations and all perturbation magnitudes with a single set of parameter values. While previous works have proposed that multiple mechanisms/strategies are used for correcting different perturbation conditions (based on fitting the model?s parameters separately to different perturbation types and sizes), our results suggest that the synchronization behavior can be interpreted as the outcome of a single mechanism/strategy, and call for a revision of the idea of multiple strategies.
Fil: Bavassi, Mariana Luz. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnologia; Argentina
Fil: Tagliazucchi, Enzo Rodolfo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnologia; Argentina
Fil: Laje, Rodrigo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnologia; Argentina. University Of California; Estados Unidos de América;
description Time estimation is critical for survival and control of a variety of behaviors, both in humans and other animals. Time processing in the few hundred milliseconds range, known as millisecond timing, is involved in motor control, speech generation and recognition, and sensorimotor synchronization like playing music or finger tapping to an external beat. In finger tapping, a mechanistic explanation in terms of neuronal activations of how the brain achieves average synchronization against inherent noise and perturbations in the stimulus sequence is still missing despite considerable research. In this work we show that nonlinear effects are important for the recovery of synchronization following a perturbation (a step change in stimulus period), even for perturbation magnitudes smaller than 10% of the period, which is well below the amount of perturbation needed to display other nonlinear effects like saturation. We build a mathematical model for the error correction mechanism and test its predictions, and further propose a framework that allows us to unify the description of the three common types of perturbations and all perturbation magnitudes with a single set of parameter values. While previous works have proposed that multiple mechanisms/strategies are used for correcting different perturbation conditions (based on fitting the model?s parameters separately to different perturbation types and sizes), our results suggest that the synchronization behavior can be interpreted as the outcome of a single mechanism/strategy, and call for a revision of the idea of multiple strategies.
publishDate 2013
dc.date.none.fl_str_mv 2013-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/774
Bavassi, Mariana Luz; Tagliazucchi, Enzo Rodolfo; Laje, Rodrigo; Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism; Elsevier Science Bv; Human Movement Science; 32; 1; 2-2013; 21-47
0167-9457
url http://hdl.handle.net/11336/774
identifier_str_mv Bavassi, Mariana Luz; Tagliazucchi, Enzo Rodolfo; Laje, Rodrigo; Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism; Elsevier Science Bv; Human Movement Science; 32; 1; 2-2013; 21-47
0167-9457
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.humov.2012.06.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Bv
publisher.none.fl_str_mv Elsevier Science Bv
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083285316272128
score 13.22299