On the value set of small families of polynomials over a finite field, II
- Autores
- Matera, Guillermo; Pérez, Mariana; Privitelli, Melina Lorena
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain an estimate on the average cardinality ν(d, s, a) of the value set of any family of monic polynomials in double-struck Fq[T] of degree d for which s consecutive coefficients a = (ad-1, ..., ad-s) are fixed. Our estimate asserts that, ν(d, s, a) = μdq + O(q1/2), where μd := Σr=1d(-1)r-1/r!. We also prove that ν2(d, s, a) = μd2q2 + O(q3/2), where ν2(d, s, a) is the average second moment of the value set cardinalities for any family of monic polynomials of double-struck Fq[T] of degree d with s consecutive coefficients fixed as above. Finally, we show that ν2(d, 0) = μd2q2 + O(q), where ν2(d, 0) denotes the average second moment for all monic polynomials in double-struck Fq[T] of degree d with f(0) = 0. All our estimates hold for fields of characteristic p > 2 and provide explicit upper bounds for the O-constants in terms of d and s with "good" behavior. Our approach reduces the questions to estimating the number of double-struck Fq- rational points with pairwise distinct coordinates of a certain family of complete intersections defined over double-struck Fq. Critical to our results is the analysis of the singular locus of the varieties under consideration, which allows us obtain rather precise estimates on the corresponding number of double-struck Fq-rational points.
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pérez, Mariana. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina
Fil: Privitelli, Melina Lorena. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Average Second Moment
Average Value Set Cardinality
Finite Fields
Rational Points
Singular Complete Intersections - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55110
Ver los metadatos del registro completo
id |
CONICETDig_aac01585104a4cf4a8976ea94b3f4bfb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55110 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the value set of small families of polynomials over a finite field, IIMatera, GuillermoPérez, MarianaPrivitelli, Melina LorenaAverage Second MomentAverage Value Set CardinalityFinite FieldsRational PointsSingular Complete Intersectionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain an estimate on the average cardinality ν(d, s, a) of the value set of any family of monic polynomials in double-struck Fq[T] of degree d for which s consecutive coefficients a = (ad-1, ..., ad-s) are fixed. Our estimate asserts that, ν(d, s, a) = μdq + O(q1/2), where μd := Σr=1d(-1)r-1/r!. We also prove that ν2(d, s, a) = μd2q2 + O(q3/2), where ν2(d, s, a) is the average second moment of the value set cardinalities for any family of monic polynomials of double-struck Fq[T] of degree d with s consecutive coefficients fixed as above. Finally, we show that ν2(d, 0) = μd2q2 + O(q), where ν2(d, 0) denotes the average second moment for all monic polynomials in double-struck Fq[T] of degree d with f(0) = 0. All our estimates hold for fields of characteristic p > 2 and provide explicit upper bounds for the O-constants in terms of d and s with "good" behavior. Our approach reduces the questions to estimating the number of double-struck Fq- rational points with pairwise distinct coordinates of a certain family of complete intersections defined over double-struck Fq. Critical to our results is the analysis of the singular locus of the varieties under consideration, which allows us obtain rather precise estimates on the corresponding number of double-struck Fq-rational points.Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pérez, Mariana. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; ArgentinaFil: Privitelli, Melina Lorena. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPolish Academy of Sciences. Institute of Mathematics2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55110Matera, Guillermo; Pérez, Mariana; Privitelli, Melina Lorena; On the value set of small families of polynomials over a finite field, II; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 165; 2; 10-2014; 141-1790065-10361730-6264CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/acta-arithmetica/all/165/2/83581/on-the-value-set-of-small-families-of-polynomials-over-a-finite-field-iiinfo:eu-repo/semantics/altIdentifier/doi/10.4064/aa165-2-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:14Zoai:ri.conicet.gov.ar:11336/55110instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:14.407CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the value set of small families of polynomials over a finite field, II |
title |
On the value set of small families of polynomials over a finite field, II |
spellingShingle |
On the value set of small families of polynomials over a finite field, II Matera, Guillermo Average Second Moment Average Value Set Cardinality Finite Fields Rational Points Singular Complete Intersections |
title_short |
On the value set of small families of polynomials over a finite field, II |
title_full |
On the value set of small families of polynomials over a finite field, II |
title_fullStr |
On the value set of small families of polynomials over a finite field, II |
title_full_unstemmed |
On the value set of small families of polynomials over a finite field, II |
title_sort |
On the value set of small families of polynomials over a finite field, II |
dc.creator.none.fl_str_mv |
Matera, Guillermo Pérez, Mariana Privitelli, Melina Lorena |
author |
Matera, Guillermo |
author_facet |
Matera, Guillermo Pérez, Mariana Privitelli, Melina Lorena |
author_role |
author |
author2 |
Pérez, Mariana Privitelli, Melina Lorena |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Average Second Moment Average Value Set Cardinality Finite Fields Rational Points Singular Complete Intersections |
topic |
Average Second Moment Average Value Set Cardinality Finite Fields Rational Points Singular Complete Intersections |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We obtain an estimate on the average cardinality ν(d, s, a) of the value set of any family of monic polynomials in double-struck Fq[T] of degree d for which s consecutive coefficients a = (ad-1, ..., ad-s) are fixed. Our estimate asserts that, ν(d, s, a) = μdq + O(q1/2), where μd := Σr=1d(-1)r-1/r!. We also prove that ν2(d, s, a) = μd2q2 + O(q3/2), where ν2(d, s, a) is the average second moment of the value set cardinalities for any family of monic polynomials of double-struck Fq[T] of degree d with s consecutive coefficients fixed as above. Finally, we show that ν2(d, 0) = μd2q2 + O(q), where ν2(d, 0) denotes the average second moment for all monic polynomials in double-struck Fq[T] of degree d with f(0) = 0. All our estimates hold for fields of characteristic p > 2 and provide explicit upper bounds for the O-constants in terms of d and s with "good" behavior. Our approach reduces the questions to estimating the number of double-struck Fq- rational points with pairwise distinct coordinates of a certain family of complete intersections defined over double-struck Fq. Critical to our results is the analysis of the singular locus of the varieties under consideration, which allows us obtain rather precise estimates on the corresponding number of double-struck Fq-rational points. Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pérez, Mariana. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina Fil: Privitelli, Melina Lorena. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We obtain an estimate on the average cardinality ν(d, s, a) of the value set of any family of monic polynomials in double-struck Fq[T] of degree d for which s consecutive coefficients a = (ad-1, ..., ad-s) are fixed. Our estimate asserts that, ν(d, s, a) = μdq + O(q1/2), where μd := Σr=1d(-1)r-1/r!. We also prove that ν2(d, s, a) = μd2q2 + O(q3/2), where ν2(d, s, a) is the average second moment of the value set cardinalities for any family of monic polynomials of double-struck Fq[T] of degree d with s consecutive coefficients fixed as above. Finally, we show that ν2(d, 0) = μd2q2 + O(q), where ν2(d, 0) denotes the average second moment for all monic polynomials in double-struck Fq[T] of degree d with f(0) = 0. All our estimates hold for fields of characteristic p > 2 and provide explicit upper bounds for the O-constants in terms of d and s with "good" behavior. Our approach reduces the questions to estimating the number of double-struck Fq- rational points with pairwise distinct coordinates of a certain family of complete intersections defined over double-struck Fq. Critical to our results is the analysis of the singular locus of the varieties under consideration, which allows us obtain rather precise estimates on the corresponding number of double-struck Fq-rational points. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55110 Matera, Guillermo; Pérez, Mariana; Privitelli, Melina Lorena; On the value set of small families of polynomials over a finite field, II; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 165; 2; 10-2014; 141-179 0065-1036 1730-6264 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55110 |
identifier_str_mv |
Matera, Guillermo; Pérez, Mariana; Privitelli, Melina Lorena; On the value set of small families of polynomials over a finite field, II; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 165; 2; 10-2014; 141-179 0065-1036 1730-6264 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/acta-arithmetica/all/165/2/83581/on-the-value-set-of-small-families-of-polynomials-over-a-finite-field-ii info:eu-repo/semantics/altIdentifier/doi/10.4064/aa165-2-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613019603042304 |
score |
13.070432 |